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Abstract 
Mathematical forecasting methods were developed to evaluate the spatiotemporal dynamics 

of trace elements, including Fe, Zn, Cu, Mn, Cr, and V, in soils at the study sites. To detect trends 
and generate predictions, various models were employed, including linear and smoothing 
techniques. The trace-element composition in the studied soils shows moderate variability, mostly 
smooth and gradual, indicating the influence of long-term geochemical processes. Regional 
differences also emerged, highlighting the unequal impact of natural conditions and human 
activities on the trace-element background. These characteristics are crucial diagnostic tools for 
analyzing forecast results. 

Keyword: trace metals, machine learning, spatiotemporal dynamics, linear regression, 
LOESS regression. 

 
1. Introduction 
Protecting the environment from pollution is critical to ensuring public safety and sustainable 

development. Natural environmental changes, alternating with anthropogenic impacts, alter natural 
geochemical cycles. A combination of the climatic factors, territory's lithological and geochemical 
features, soil formation conditions, and the intensity of economic activity determines the formation 
of spatial anomalies and temporal trends in chemical element content, especially heavy metals (HMs) 
(Sukiasyan et al., 2025). The situation is complicated by the fact that in the natural biogeochemical 
processes the HMs can accumulate and migrate within the soil, creating a long-term environmental 
hazard (Gall et al., 2015). Chemicals contaminating soil with HMs, mainly due to erosion and organic 
matter loss, are the primary results of declining soil fertility (Smith et al., 2024). The dynamics of 
HMs accumulation and migration in soils are determined by multiple physical, chemical, biological, 
and climatic factors (Zaky, Elwa, 2020; Kicińska et al., 2022).  
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However, the key determinants are the area's natural features such as relief, water 
permeability, and soil horizon’s structure (de Matos et al., 2001). It has been established that small 
particles of HMs are washed from the upper slopes, leading to the formation of accumulation zones 
in the lower parts of the terrain (Ding et al., 2017). It is clear that achieving the Sustainable 
Development Goals requires moving towards integrated monitoring systems that account not only 
for the total content of elements but also for their chemical distribution in the soil environment, 
mobility, and availability to living organisms (Tóth et al., 2016).  

In recent years, ecological research has increasingly shifted from basic measurements of 
metal content to detailed evaluations of their environmental risks. The use of multivariate 
statistical methods, geoinformation technologies, and ecological risk indices enables researchers to 
identify sources, spatial distributions, and potential threats. This progression lays the groundwork 
for scientifically grounded pollution control and impact mitigation strategies (Gong et al., 2024).  

Spatiotemporal changes in the chemical composition of soils are a key focus in environmental 
research, as soils act as accumulators and converters of elemental constituents, reflecting both 
natural and anthropogenic processes (Shi et al., 2023). The development of spatial anomalies and 
temporal trends in soil element content results from a combination of climate factors, lithological 
and geochemical terrains, soil formation conditions, and moderate economic activity (Zhuo et al., 
2019). Analysing these changes helps evaluate the current condition of ecosystems and guides their 
future development. Among HMs, trace elements (TEs) are particularly prominent; they occur at 
much lower concentrations but play a crucial role in the functioning of biological and geochemical 
systems (Sukiasyan, Kirakosyan, 2024).  

TEs are involved in oxidation-reduction processes. They regulate other chemical elements 
migration. TEs respond to environmental changes, and indicate the soils mineralogical features 
and the soils long-term chemical variations (Zhang et al., 2022; Xu et al., 2023; Islam et al., 2023). 
A typical feature of the content of ТЕs in the soil cover is its spatial and temporal variability (Wang 
et al., 2020; Taghizadeh-Mehrjardi et al., 2021). This is why modern research is increasingly aimed 
not only at describing soils' current conditions but also at creating predictive models for their 
spatiotemporal changes (Córdoba et al., 2025).  

The aim of this study is to analyze the spatiotemporal dynamics of selected ТЕs in soil 
samples from different regions of Armenia, drawing on multi-year monitoring data, with a focus on 
predicting changes in their concentrations using mathematical models. 

 
2. Materials and methods 
The study is based on monitoring data on the content of TEs Fe, Zn) Cu, Mn, Cr and V) in the 

soils of the regions Gegharkunik (Gavar and Martuni sites) and Kotayk (Hrazdan sites) is situated 
in the eastern part of Armenia (Figure. 1). At least five soil samples from the same site at the 
control points, obtained using the envelope method to a depth of up to 20 cm, were mixed. 
The samples were subsequently placed in dark glass containers and transported at +4°C for 
24 hours for instrumental measurements in the laboratory. Direct X-ray exposure was used for 
elemental analysis of all soil samples using a portable XRF analyser (Thermo Scientific™ Niton™) 
(Sukiasyan et al., 2022). 

 
Fig. 1. Soil sampling region of Armenia 

64 
 



Biogeosystem Technique. 2025. 12(2) 

The initial time series spans from 2021 to 2023 and shows the average regional element 
concentrations. For analysis, averaged indicators across regions were utilised to focus on common 
spatiotemporal patterns. To create and forecast the temporal behaviour of TEs, various 
mathematical models were employed, including linear regression (LR), exponential smoothing 
(ETS), and locally estimated scatterplot smoothing (LOESS) regression (Hyndman, Koehler, 2002; 
Koyande, 2024). LOESS is a non-parametric regression method that performs local polynomial 
fits. It applies a low-degree polynomial to data subsets using weighted least squares, where the 
weights depend on the distance to the target point. This approach is particularly effective at 
identifying non-linear patterns, such as sudden rises or falls in metal levels. For each metal, 
a second-degree polynomial was fitted using LOESS, producing a locally adaptive model that 
predicts smooth, flexible future trends (Cleveland, Devlin, 1988).  

The fitted polynomial takes the general form: 
𝑧̂𝑡+𝑘  = ∑ 𝜔𝑖(𝑡 + 𝑘)𝑃𝑖(𝑡 + 𝑘)𝑛

𝑖=1     (1) 
where: 𝑧̂𝑡+𝑘 - is the future values of concentration in log-space at year 𝑥𝑡+𝑘; 𝑃𝑖(𝑡 + 𝑘) is a local 

polynomial (degree 2); 𝑤𝑖(𝑡 + 𝑘) are weights based on proximity to 𝑡, controlled by a span 
parameter. 

Coefficients of the fitted curve: 
𝑦�𝑡 = 𝑎 ⋅ 𝑡2 + 𝑏 ⋅ 𝑡 + 𝑐𝑦      (2) 
where 𝑎, 𝑏, and 𝑐 are coefficients determined through local fitting. 
The final predicted concentration can be calculated by: 
𝑦�𝑡+𝑘 = exp (𝑧̂𝑡+𝑘)      (3) 
Model parameters were estimated individually for each TE and site. A comparative analysis 

of these results helped evaluate the consistency of the forecasts and the robustness of the identified 
trends. Forecasts were made for 2024-2026 to analyse changes in soil TE composition. 

Data processing and model development employed standard statistical methods. Results 
were interpreted considering established geochemical mechanisms that control the migration and 
accumulation of TEs in soils. 

 
3. Results and discussion 
The selection of Zn, Cu, Fe, Mn, Cr, and V for regional analysis is due to their physicochemical 

characteristics, marked by high chemical reactivity in soil and strong responsiveness to local 
geochemical conditions. Based on the concentration data, a forecast of the temporal behaviour of TEs 
was created using mathematical models, including LR, ETS, and LOESS (Tables 1-3).  

 
Table 1. Parameters of the linear regression model for soil sampling sites 
 

Trace Element 
 
 
 
Parameters 

Zn Cu Fe Mn Cr V 

Hrazdan sites 

Intercept 𝛽𝛽0 -251․02 171.45 -342.42 -52.56 735.68 -557.29 

Slope 𝛽𝛽1 0.13 -0.08 0.17 0.03 -0.37 0.28 
Gavar sites 

Intercept 𝛽𝛽0 -46․17 -153.11 -165.31 -151.53 557.94 -453.42 

Slope 𝛽𝛽1 0.02 -0.07 0.09 0.08 -0.28 0.23 
Martuni sites 

Intercept 𝛽𝛽0 186.70 299.65 -141․66 126․75 -350.33 -380.33 

Slope 𝛽𝛽1 -0.09 -0․15 0․8 -0․06 0.18 0.19 
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Table 2. Parameters of the exponential smoothing model for soil sampling sites 
 

Trace Element  
 
 

Parameters 

Zn Cu Fe Mn Cr V 

Hrazdan sites 

Level 4.56 4.41 10.23 6.72 4.45  4.72 

Trend 0.13 -0.12 0.17 0.03 0.37 0.28 

Damping 0.995 0.800 0.995 0.995 0.995 0.995 

Initial Level 99.27 85.10 29633.10 849.07 97.73 124.87 

Initial Trend 0.03 -16.53 -1772.30 -26.23 -3.03 -2.77 

Gavar sites 

Level 4.50 4.41 10.48 6.66 4.62 4.78 

Trend 0.04 -0.11 0.090 0.08 0.28 0.23 

Damping 0.80 0․80 0.995 0.995 0.995 0.995 

Initial Level 84.40 38515.00 819.65 113.30 113.50 130.55 

Initial Trend -13.27 -5694․33 -63․95 -5․80 -5.80 -4.38 

Martuni sites 

Level 4.47 4.26 10.33 6.63 4.85 4.67 

Trend -0․09 -0.21 0.08 -0.06 0.17 0.19 

Damping 0.995 0.800 0.995 0.995 0.995 0.995 

Initial Level 71.80 31548.45 737.40 135.30 135.30 116.55 

Initial Trend -14.35 -700.75 4․10 -3.35 -3.35 -7.85 

 
Table 3. Parameters of the locally weighted scatterplot smoothing model for soil sampling sites 
 

Trace Element 
 
 
 

Parameters 

Zn Cu Fe Mn Cr V 

Hrazdan sites 
 
 

a 0․13 0․13 0․24 0․06 0.40 0.30 

b -509․92 -539․41 -954․84 -245․51 -1608.13 -1214.92 

c 5.15e+05 5.45e+05 9.65e+05 2.48e+05 1.63e+06 1.23e+06 
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Gavar sites 
 

a -0.11 0.10 0.247 0․16 0.33 0.26 

b 430.53 -394.08 -988.66 -644.96 -1337.90 -1054.75 

c -
4.35e+05 3.99e+05 1.01e+06 6.52e+05 1.35e+06 1.07e+06 

Martuni sites 
 

a -0.06 0.08 0.10 0.26 0.20 0.26 

b 256.64 -310.73 -394.90 -1053.07 -811.55 -1052.18 

c -
2.59e+05 3.14e+05 3.99e+05 -2.66e+05 8.20e+05 1.06e+06 

 
Using the specified parameters, predicted changes in TE concentrations in soil samples 

across all research sites through 2026 were modelled using LR, ETS, and LOESS (Figure 2).  

 
Fig. 2. Predicted trajectories of change in TE concentrations (Zn, Cu, Fe, Mn, Cr, and V) in the 
soils at the Hrazdan, Martuni, and Gavar sites up to 2026 
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For Zn, regional differences are particularly notable. At the Hrazdan sites, LR captures the 
ongoing directional trends over the forecast period, whereas ETS smooths fluctuations to produce a 
more stable trajectory. LOESS highlights local nonlinear patterns, influenced by regional factors. 
At Gavar and Martuni, forecast curves are more stable with minimal differences between LR and ETS, 
while LOESS shows slight deviations. Confidence intervals for Zn expand over time, especially for LR 
and LOESS, but remain within the observed range, supporting forecast interpretation. This pattern 
aligns with Zn's chemistry as a moderately mobile element influenced by pH and organic matter. 

Cu concentration in all three regions is highly consistent across models. The predicted LR 
trajectories are smooth; ETS further diminishes fluctuations, and LOESS uncovers only minor 
nonlinear effects. Regional variations are moderate and do not cause significant differences in 
forecast estimates. Confidence intervals are relatively narrow and gradually widen without sudden 
jumps. This forecast stability is consistent with copper's chemical behaviour in soil, where it tends 
to bind strongly to organic matter and mineral components, restricting its movement and 
stabilising its temporal dynamics, even in the presence of anthropogenic activities. 

Cu concentration in all three regions is highly consistent across models. The predicted LR 
trajectories are smooth; ETS further diminishes fluctuations, and LOESS uncovers only minor 
nonlinear effects. Regional variations are moderate and do not cause significant differences in 
forecast estimates. Confidence intervals are relatively narrow and gradually widen without sudden 
jumps. This forecast stability is consistent with copper's chemical behaviour in soil, where it tends 
to bind strongly to organic matter and mineral components, restricting its movement and 
stabilising its temporal dynamics, even in the presence of anthropogenic activities. 

A notably different perspective emerges when examining Fe. Even after considering regional 
differences, all models show marked forecast volatility. LR predicts sharply rising trends in all 
regions, ETS enhances this trend, and LOESS highlights the nonlinear complexity of the time 
series. Confidence intervals widen quickly and considerably, especially in 2025-2026, signalling 
high uncertainty in future estimates. This model volatility underscores iron's fundamental role as a 
redox-sensitive element and a key geochemical regulator: transitions between Fe2⁺ and Fe3⁺ are 
linked to oxide phase formation, causing sudden and hard-to-predict shifts in concentrations. 

Similar patterns have been observed for Mn. At the Hrazdan sites, the LR and ETS forecast 
curves show growth, while LOESS produces trajectories with sharp bends, highlighting the 
nonlinear nature of the dynamics. At the Gavar sites, the forecasts are somewhat smoother, but the 
overall trend of high variability remains. Confidence intervals quickly widen and become 
disproportionately large, signaling low forecast stability. This behaviour aligns with the chemical 
properties of Mn, which, like Fe, participates actively in redox reactions and can significantly 
change its soil speciation (Mn2+/Mn4+) with minor pH shifts. 

Regarding Cr, regional analysis also fails to produce stable forecast estimates. In all regions, 
LR shows sharp upward trends, ETS amplifies the growth trend, and LOESS highlights the strong 
nonlinearity of the time series. Predicted values quickly surpass observed levels, and confidence 
intervals expand substantially. This indicates Cr's valence instability and significant differences in 
the mobility and toxicity of its various forms, meaning even minor environmental changes can 
cause disproportionate concentration shifts. 

Finally, V behaves similarly to Cr and Mn. Overall, the LR and ETS projections show a clear 
upward trend across all sites, with LOESS capturing sharp local variations. Confidence intervals 
widen quickly and peak at the end of the forecast, suggesting vanadium's dynamics are highly 
unpredictable. This pattern is consistent with its chemistry, which features a complex valence 
system and high redox sensitivity. 

 
4. Conclusion 
A comparison of forecasting methods revealed notable differences. LR was sensitive to 

directional shifts and best captured overall trends in regions with stable dynamics. However, under 
high variability, it often overestimated predictions. ETS proved effective at smoothing short-term 
fluctuations and providing more stable forecasts for elements with moderate reactivity, such as Zn and 
Cu. Yet this method does not accurately model systems with strong redox-dependent dynamics. 

Using LOESS allowed the detection of local nonlinear features in the time series that parametric 
models miss. This method was especially useful for analyzing spatial differences, but its predictive 
stability diminishes with shorter time series, restricting its effectiveness for long-term forecasts. 
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The results indicated that regional forecasting provides clear and consistent estimates for 
chemically stable and complexing elements like Zn and Cu. However, for redox-sensitive elements 
such as Fe, Mn, Cr, and V, significant uncertainty persists even when using a spatial approach. This 
highlights the inherent limitations of time-based models in accurately representing elements whose 
concentrations are more influenced by changes in soil physicochemical conditions than by 
temporal variations. 
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Abstract 
The article is devoted to the issues of organization of monitoring and control of invasive 

plants growing in hard-to-reach places using a swarm of drones and a drone port. Sosnovsky's 
hogweed has spread widely in Russia and is actively seizing new areas, creating infestation steps 
that are difficult to control using traditional methods. Monitoring and elimination of such foci by 
traditional manual methods is time-consuming, ineffective and unsafe.  

A new technology that provides rapid monitoring of large areas and targeted chemical 
intervention only where necessary, reducing the risk of damage from invasions and the use of 
pesticides, is a technology based on the use of a drone swarm in conjunction with a drone port. 
It allows you to quickly explore large areas and get detailed images of growing vegetation from 
different angles. The resulting images can be recognized by means of artificial intelligence, 
analyzing the density of growth of invasive plants and their proximity to other crops. 

The data collected by agrodrones can be conditionally divided into digital and graphical. 
When receiving digital data from a swarm of drones, the information on the drone port is cleaned 
of noise and checked for consistency to ensure the reliability of the data, which improves the 
efficiency of system maintenance. For graphic data, first of all, color correction is used, restoring 
color details and increasing clarity, while restoring the natural image distorted at the time of 
digitization and subsequent processing.  

The key issue is the merging of the data collected by the agrodron swarm. Different specimens 
of agrodrons can receive different parameters and different images of the same habitat of invasive 
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plants, and these data need to be linked to each other, eliminating contradictions. After building a 
consistent model of the area, the growing plants are recognized using artificial intelligence.  

The described technology allows automated analysis of the vegetation condition and provides 
conclusions and recommendations based on artificial intelligence. 

Keywords: invasive plants, swarm of agricultural drones, data cleaning, data fusion. 
 
1. Problem Statement of Monitoring 
Weed infestation presents a pressing issue in agriculture, significantly reducing crop yields 

and, in certain cases, posing serious threats to ecosystems, agricultural productivity, and human 
health. In Russia, the spread of Heracleum sosnowskyi (Sosnowsky’s hogweed) is particularly 
acute. This plant forms dense thickets up to 3 meters tall and secretes a toxic sap that causes severe 
phytophotodermatitis in humans. Ambrosia artemisiifolia (common ragweed) has become 
widespread in southern regions, triggering potent allergic reactions – its pollen being a notorious 
allergen – and diminishing field productivity (Müllerová, 2024) Solidago canadensis (Canada 
goldenrod) and related species aggressively displace native flora, establishing monocultures that 
degrade pollinator habitats and disrupt ecosystem services These and other invasive weeds 
continuously colonize new territories, creating invasion foci that are difficult to control using 
conventional methods. 

Traditional manual approaches to monitoring and eradicating such infestations are labor-
intensive, time-consuming, inefficient, and potentially hazardous. For example, ground-based 
surveys of hogweed-infested areas are impeded by the risk of chemical burns while locating 
ragweed across expansive fields demands substantial human resources. Moreover, blanket 
pesticide application over entire fields results in excessive chemical loading on the environment. 
Thus, novel technologies are required that enable rapid, large-scale monitoring and facilitate 
precise, localized interventions only where necessary – thereby mitigating ecological damage and 
minimizing chemical usage. 

The advancement of unmanned aerial vehicles (UAVs), or agricultural drones, offers 
transformative potential in addressing this challenge. UAVs allow rapid coverage of extensive areas 
and provide high-resolution visual data through aerial imagery (Figure 1). They enable timely and 
comprehensive field inspections, facilitate the identification of weed clusters, reduce inspection 
time, and permit detailed, multi-angle examination of detected infestations (Monteiro, Santos, 
2022). Artificial intelligence (AI) algorithms can then be applied to classify plant species visible in 
the captured images (Dutech, Scherrer, 2013). 

Although the deployment of agricultural UAVs remains somewhat limited in Russia at 
present, the topic of agro-drones remains highly relevant – not only domestically but globally. 
Increasingly, “smart” technological solutions are emerging that reduce operational costs and 
optimize agro-industrial complex (AIC) workflows. Drones play a pivotal role in the digital 
transformation of the AIC. Consequently, UAV developers continue to introduce increasingly 
sophisticated and multifunctional models tailored to diverse agricultural tasks. 
 

 
 
Fig. 1. Application of agricultural drones in farming 
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Of particular interest is the use of drone swarms – coordinated groups of UAVs operating in 
conjunction with a central droneport. While a single drone is constrained by flight range and 
endurance, a swarm can efficiently cover large areas and complete missions far more effectively. 
Cooperative control necessitates robust inter-drone communication and avoidance of task 
duplication. Modern algorithms enable real-time data exchange and collaborative coverage path 
planning, wherein each UAV autonomously computes its flight trajectory while accounting for the 
plans of others. Distributed coordination and information sharing maximize area coverage while 
minimizing energy consumption. A key challenge lies in the preliminary processing and cleaning of 
acquired data, as well as its fusion across multiple UAVs and the resolution of inconsistencies 
between overlapping observations. 

 
2. Hardware Configuration for Monitoring 
To perform monitoring tasks effectively, a drone must be equipped with the following 

instrumentation: 
1. A high-resolution camera for capturing detailed imagery; 
2. An ultrasonic sensor for obstacle detection and collision avoidance; 
3. A Bluetooth module for short-range data transmission; 
4. A GPS receiver for geotagging the location of each data capture; 
5. An accelerometer for maintaining horizontal stabilization and minimizing deviations; 
6. A barometric sensor (barometer) for altitude hold; 
7. An autopilot system for autonomous waypoint navigation and return-to-home 

functionality. 
The drone must incorporate obstacle-avoidance sensors capable of triggering evasive 

maneuvers upon detecting obstructions. Its internal control system should enable autonomous 
flight along pre-defined routes even in the event of communication loss with the ground control 
station. 

The drone must be outfitted with a high-resolution camera, as it is required to approach a 
designated field segment, descend to a low altitude, and capture multiple high-quality images. 
Upon mission completion, the collected data must be transmitted to the droneport, where 
specialized software leveraging AI algorithms performs subsequent analysis and interpretation. 

 
3. Data Cleaning 
Data acquired by agricultural drones can be broadly categorized into two types: digital 

(numerical sensor readings) and graphical (imagery). 
All transmitted and received signals inherently contain noise – defined as any undesirable 

signal component superimposed on the ideal signal. In digital wireless communication systems, 
the ideal signal resembles a trapezoidal pulse, which becomes distorted in the presence of noise 
(Figure 2; Li, 2009).  

 

 
Fig. 2. Ideal vs. real signal waveforms 

 
Deviations from the ideal can be observed in both time (temporal jitter) and amplitude 

(amplitude noise). In radio-frequency systems, signal amplitude corresponds to power; thus, amplitude 
deviation (dA) represents amplitude noise, while temporal deviation (dt) constitutes jitter. 
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Jitter-unwanted timing instability – manifests as fluctuations in the temporal positioning of 
signal transitions relative to their nominal values. It arises from synchronization instability and 
channel path variations. Jitter comprises two components: a purely random (stochastic) 
component and a quasi-deterministic, typically low-frequency component known as wander 
(Smagin, 2012). 

The effects of jitter and amplitude noise on system performance are asymmetric. Amplitude 
noise acts as a continuous function, exerting a persistent influence on system characteristics. 
In contrast, jitter affects the system only during signal edge transitions. 

Signal integrity is generally defined as any deviation from the ideal signal waveform. Thus, 
it encompasses both amplitude noise and jitter. However, certain integrity issues – such as 
undershoot, overshoot, and signal ringing – cannot be fully characterized solely by jitter and noise 
metrics (Figure 3). 

 
 
Fig. 3. Characteristics of signal integrity 

 
The combined impact of jitter and amplitude noise is best evaluated from the perspective of 

the receiver in a communication system. The receiver samples the incoming pulse at time t using a 
voltage threshold v (Figure 4). In the ideal case, sampling occurs at the center of the input pulse. 
If the rising and falling edge times satisfy t<sub>f</sub> < t<sub>s</sub> and the signal voltage 
V<sub>1</sub> > v<sub>s</sub>, the system correctly registers a logical “1” (Figure 4a). 

In the presence of jitter and noise, signal edges shift along the time axis and voltage levels 
fluctuate along the amplitude axis. This may violate the conditions for correct bit detection, leading 
to bit errors (e.g., a logical “1” misinterpreted as “0”). Three failure modes may occur during 
“1” detection: 

1. The rising edge crosses the threshold after the sampling instant (t<sub>f</sub> > 
t<sub>s</sub>);   

2. The falling edge crosses before the sampling instant (t<sub>f</sub> < t<sub>s</sub>);   
3. The signal voltage falls below the threshold (V<sub>1</sub> < v<sub>s</sub>). 
For logical “0” detection (Figure 4b), correct sampling requires t<sub>r</sub> < 

t<sub>s</sub> < t<sub>f</sub> and V<sub>0</sub> < v<sub>s</sub>. Violations mirror those 
for “1,” except that V<sub>0</sub> > v<sub>s</sub> leads to error. 
 

 
 
Fig. 4. Receiver-based sampling of input data 

 
Given that digital systems transmit numerous bits over time, overall performance is 

commonly quantified by the Bit Error Rate (BER) – the ratio of erroneous bits (N<sub>err</sub>) 
to total transmitted bits (N<sub>tot</sub>). BER serves as a fundamental quality metric for 
communication systems. At multi-gigabit-per-second data rates, standards such as Fibre Channel, 
Gigabit Ethernet, SONET, and PCI Express typically require BER ≤ 10<sup>−12</sup>, meaning 
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no more than one error per trillion bits. Higher BER degrades network efficiency and increases 
system latency. BER depends on data rate, jitter, and noise, and – being statistical – is often 
analyzed using Poisson statistics. 

Jitter and noise originate from numerous physical and systemic sources, broadly classified as 
intrinsic and extrinsic. Intrinsic sources stem from the stochastic behavior of electrons and holes in 
semiconductor devices and represent fundamental physical limits that cannot be fully eliminated – 
though they may be minimized. Extrinsic sources arise from system design and configuration and 
are thus potentially correctable. 

Intrinsic noise primarily results from thermal and shot noise in electronic and optoelectronic 
components, setting baseline constraints on system dynamic range. Noise is typically quantified in 
terms of voltage, current, or power – collectively referred to as “amplitude.” When amplitude noise 
ΔA(t) is superimposed on a base signal A<sub>0</sub>(t), the corresponding timing jitter can be 
approximated via linear small-signal perturbation theory: 

$$ 
\Delta t \approx \frac{\Delta A(t)}{dA_0/dt} 
$$ 
where dA<sub>0</sub>/dt is the signal slew rate (Figure 5). Thus, for a given amplitude 

noise level, timing jitter decreases as the signal edge steepness increases – highlighting the benefit 
of minimizing rise/fall times to reduce jitter. 

 

 
Fig. 5. Conversion of amplitude noise into timing jitter according to linear perturbation theory 
 

Extrinsic noise and jitter arise from system-level imperfections and are amenable to 
mitigation. Common types include periodic modulation (phase, amplitude, or frequency), duty 
cycle distortion, inter-symbol interference, crosstalk, electromagnetic interference (EMI), and 
reflections due to impedance mismatches. 

Digitally acquired sensor data undergoes preliminary filtering on board the drone or at the 
droneport processor to prevent heavily corrupted data from entering the operational database. 
Cleaned data is then accumulated in real time within a centralized data repository. 

Effective noise filtering enhances measurement accuracy (Baklanov, 1998) and sensor 
reliability. Two primary noise types must be addressed: (1) stationary (additive white Gaussian 
noise) with relatively stable amplitude, and (2) impulsive noise caused by external disturbances. 

For stationary noise, the moving average filter is well-suited: it maintains a buffer of recent 
measurements and shifts the observation window forward with each new sample. Although this 
method involves floating-point calculations that slightly slow processing, the overhead remains 
negligible compared to data transmission latency (FourWeekMBA, 2025). 

Impulsive noise within individual measurements is best mitigated using a median filter 
(Smagin, 2012). Empirical studies show that combining median filtering with moving average 
yields robust results. 

Of special interest is the filtering of the quasi-deterministic jitter component, which primarily 
reflects hardware-specific characteristics. To isolate this component, we propose the “Caterpillar” 
method – also known as Singular Spectrum Analysis (SSA). A key advantage of SSA is that it 
requires no prior model of the jitter process. SSA decomposes a time series into interpretable 
components (trend, periodicities, noise) by embedding the series into a trajectory matrix, 
performing singular value decomposition (SVD), and reconstructing selected components. This 
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approach outperforms conventional time-series methods in separating structured signal features 
from noise. 

Following onboard preprocessing, cleaned data is transmitted via communication channels to 
the central droneport computer for advanced analysis. 

Graphical data – i.e., aerial imagery – also requires cleaning. This includes correcting or 
removing corrupted information such as duplicates, missing values, incorrect formats, and outliers. 

Color correction is an essential step in digital image processing. Manual white balance 
settings on cameras often introduce uncontrolled color inaccuracies. Although modern image 
editors provide powerful correction tools, manual intervention is impractical in high-throughput 
workflows. Fortunately, automated color correction solutions exist. 

Image quality enhancement focuses on restoring natural color fidelity and improving 
sharpness – reversing distortions introduced during capture or digitization. Advanced algorithms 
automatically identify regions requiring adjustment (e.g., color balance, brightness, contrast) and 
apply localized corrections. These systems also address common artifacts such as moiré patterns 
and color casts. 

Sophisticated color grading leverages blending algorithms and lookup tables (LUTs) to not 
only restore faded colors but also modify the original color palette as needed. 

Professional tools such as iCorrect EditLab – a plugin for Adobe Photoshop and other leading 
graphic editors – offer fully automated color correction (SmartAgro, 2025). The software analyzes 
the entire image, identifies predefined color classes (e.g., sky blue, foliage green, human skin 
tones), and aligns corrections with the host application’s color management settings. 

iCorrect EditLab operates in four sequential stages: 
1. Neutral tone balancing: Identifies mid-gray regions to eliminate color casts; 
2. White/black point detection: Sets dynamic range endpoints; 
3. Saturation, contrast, and brightness adjustment; 
4. Natural color restoration: Recalibrates individual hues to reflect real-world appearance. 
 
4. Data Fusion 
A critical challenge lies in processing and fusing data collected by a swarm of UAVs. Different 

drones may capture varying measurements or images of the same field segment, necessitating 
reconciliation and conflict resolution. 

First, high-accuracy monitoring requires integrating heterogeneous data sources: RGB 
imagery, multispectral data, LiDAR point clouds, and thermal imaging. Such data fusion 
significantly enhances weed detection accuracy. Studies confirm that combining spectral, textural, 
and thermal features yields superior classification performance compared to single-modality 
approaches (FourWeekMBA, 2025; Monteiro, Santos, 2022). 

Second, even homogeneous data (e.g., visible-spectrum photographs from multiple drones) 
exhibit overlapping regions that must be seamlessly stitched. Generating consistent orthomosaics 
and vegetation maps from partially overlapping images is essential to avoid gaps or duplicate 
counting of the same plants. 

 
5. Image Recognition via Artificial Intelligence 
Object detection in drone-captured imagery is framed as a classification problem within an 

AI system. Solving it requires a pre-assembled image database of regional flora, partitioned into 
training and validation sets. A neural network is then trained on this dataset to classify plant 
species in new, incoming images. 

Since ground-truth labels (correct species identifications) are available for training samples, 
this constitutes a supervised learning task. The goal is to assign each detected plant to its correct 
taxonomic class. Unrecognized species – those absent from the training set – may be flagged as 
“unknown.” Accumulation of numerous such cases would necessitate model retraining with 
expanded data. 

The machine learning (Malinowski et al., 2025) pipeline for plant classification is illustrated 
in (Figure 6). 

By aggregating observations from the drone swarm and classifying detected vegetation, 
a detailed spatial map of invasive species distribution and density can be constructed. This enables 
targeted intervention strategies – ranging from precision herbicide application to localized 
mechanical removal – optimizing resource use and ecological impact. 
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Fig. 6. Stages of the machine learning process 
 

6. Advantages of Drone Swarm Monitoring 
Compared to conventional field inspection methods, agricultural drone swarms offer the 

following advantages: 
1. Rapid area coverage: Depending on model, a single drone can monitor 2–6 hectares in 10–

20 minutes. Swarm deployment parallelizes this process, drastically reducing total inspection time.   
2. Operation in complex terrain: High maneuverability and terrain-following sensors enable 

obstacle avoidance and effective monitoring on slopes, wetlands, and other inaccessible areas 
where tractors or personnel cannot operate.   

3. Geospatial precision: GPS-enabled data ensures accurate mapping and repeatable 
monitoring. 

4. All-weather and day/night operability: Equipped with appropriate sensors (e.g., thermal, 
NIR), drones function independently of lighting or meteorological conditions. 

5. Cost efficiency: UAVs significantly reduce expenditures on ground machinery, fuel, and 
labor.   

6. Multifunctionality: Modern drones support advanced features such as waypoint marking, 
mission pause/resume, multi-payload coordination, and centralized task management. 

Agronomists traditionally face significant time and labor demands in routine field 
inspections. The integration of NDVI (Normalized Difference Vegetation Index) maps enables real-
time vegetation monitoring, highlighting priority zones for ground verification. 

NDVI quantifies vegetation presence and health by analyzing reflected light in visible and 
near-infrared (NIR) bands (Li, 2009). Chlorophyll-rich, healthy plants strongly absorb red light 
(used in photosynthesis) and reflect NIR due to intact cellular structure. Stressed or sparse 
vegetation exhibits the opposite pattern. Thus, NDVI serves as a proxy for crop vigor. 

However, NDVI indicates that a problem exists – not why. Season-long NDVI trend analysis 
is essential for accurate diagnosis. 

NDVI data is collected via satellites or UAVs equipped with NIR cameras, operating from 
orbital altitudes down to ~700 m. This enables high-resolution, actionable field maps. 

The data acquisition workflow includes: 
1. Equipment calibration for specific crops and conditions; 
2. Placement of ground control points; 
3. Aerial image capture; 
4. Georeferencing of all field segments. 
Post-processing yields detailed vegetation health maps, empowering agronomists to 

prioritize interventions and forecast yields. 
Sentinel-2 satellite imagery provides NDVI at 10 m/pixel resolution, enabling fine-scale 

analysis – superior to other optical indices limited to 20 m/pixel. Nevertheless, NDVI has 
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limitations: its sensitivity declines at high canopy densities, and persistent cloud cover can degrade 
data quality, necessitating complementary radar or UAV-based sensing. 

Moreover, NDVI performs poorly in fields with low vegetation cover or during early growth 
stages. In such cases, the MSAVI (Modified Soil-Adjusted Vegetation Index) offers a robust 
alternative. MSAVI accounts for soil background effects (color, moisture), making it particularly 
effective during early season monitoring when soil is still visible between sparse seedlings. 

 
6. Conclusion 
The deployment of agricultural drone swarms for monitoring crop fields substantially 

enhances agronomic efficiency. By automating visual inspection, enabling precise weed detection, 
and leveraging AI-driven analytics, this approach significantly boosts labor productivity in 
agriculture while supporting sustainable, data-driven decision-making. 
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Abstract 
The article is devoted to the consideration of topical issues of organizing continuous 

monitoring of the pipeline system for pumping extracted natural gas and oil in hard-to-reach places 
based on the use of a drone port and a swarm of drones. A large amount of natural resources is 
extracted in the coastal shelf of the northern seas, where the water surface is covered with ice most of 
the time, and monitoring of the pipeline system by means of the auxiliary fleet is possible only during 
a short period of navigation, therefore automation of the monitoring process will allow for year-
round monitoring and timely identification of emerging problems for their prompt elimination. 

Using a drone swarm with a droneport base station makes it possible to increase the 
efficiency of obtaining information by obtaining it more quickly from several alternative sources 
and then merging them. When information is received from the drone, the information is cleared of 
noise and checked for consistency to ensure a higher level of data reliability, which improves the 
efficiency of system maintenance. Data is cleared from noise by the drone port, while merging data 
from coherent sources and building a visual model of the pipeline system status is performed by a 
stationary computer after data is transmitted from the drone port via fiber-optic communication 
channels. The visual model, combined with parametric data obtained from sensors installed inside 
the pipeline, allows artificial intelligence systems to predict potential emergency conditions and 
plan routine repairs of the pipeline infrastructure until a real accident occurs with serious 
consequences. The introduction of an automated continuous monitoring system will allow the 
pipeline to be operated according to its actual technical condition, thereby reducing operating costs 
and ensuring the safety of its operation. 

Keywords: monitoring, pipeline system, drone port, drone swarm. 
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1. Introduction 
Energy constitutes one of the foundational sectors of the economy and plays a critical role in 

sustaining modern society (Atdaeva et al., 2024). It encompasses not only resource generation 
challenges but also issues related to distribution and consumption. 

Currently, oil and coal extracted from the Earth's subsurface represent the predominant 
share of global energy resources. As is well known, these reserves within the Earth's crust are finite; 
consequently, humanity actively seeks equivalent substitutes. 

Replacing coal and oil with natural gas substantially reduces harmful atmospheric emissions, 
thereby contributing to the preservation of the Earth's ozone layer and improving the operational 
efficiency of thermal power plants. 

Significant volumes of natural resources are extracted from the continental shelves of northern 
seas, raising the acute challenge of transporting these commodities to the mainland. While maritime 
shipping is widely employed for this purpose, vessel-based delivery of oil and natural gas represents a 
highly costly undertaking – particularly in northern seas, where such operations become infeasible 
during winter months due to ice cover. Pipeline transportation presents a viable alternative, offering 
greater economic efficiency and reduced operational complexity. 

Pipeline operation for oil and gas transportation necessitates continuous condition monitoring 
through readings from embedded sensors, supplemented by periodic external inspections. 
For submerged pipeline sections, such activities can only be conducted using auxiliary vessels and 
exclusively during ice-free periods – a condition that, in northern seas, occurs for only a brief annual 
window. Relying on auxiliary fleets for pipeline monitoring constitutes a costly seasonal operation 
feasible solely in the absence of ice cover. Given that pipeline failures may occur at any time of year, 
the implementation of alternative monitoring methodologies becomes imperative. 

 
2. Materials and methods 
Pipeline inspection monitoring represents a comprehensive suite of non-destructive testing 

(NDT) and diagnostic procedures designed to identify defects (corrosion, cracks, deformations), 
assess residual wall thickness, verify weld integrity, and evaluate insulation quality. These 
procedures employ techniques including ultrasonic testing, radiography, liquid penetrant and 
magnetic particle inspection, as well as visual examination – often integrated within automated 
systems for continuous monitoring and residual service life assessment. 

The principal objectives of pipeline monitoring include: 
1. Defect detection: Identification of corrosion, erosion, cracks, dents, and pitting. 
2. Geometric control: Measurement of wall thickness and deviations from design geometry. 
3. Weld assessment: Verification of joint quality. 
4. Component diagnostics: Examination of valves, flanges, supports, and hangers. 
5. Insulation evaluation: Assessment of anticorrosive coating and thermal insulation 

integrity. 
 
3. Discussion and results 
The overarching purpose of monitoring is to ensure the safety and reliability of pipeline 

infrastructure, prevent accidents and gas leaks, facilitate maintenance planning, and extend the 
operational lifespan of pipeline assets. Pipeline failure in aggressive marine environments poses 
severe ecological consequences. 

For monitoring pipelines in inaccessible locations, automated inspection using unmanned 
aerial vehicles (UAVs), commonly termed drones, offers a practical solution. However, a single 
drone proves inefficient for rapid assessment of extensive pipeline segments; consequently, drone 
swarms coordinated by a specialized hub – the drone port – are typically deployed. 

A drone port constitutes an advanced unmanned technology complex designed for automated 
drone deployment, recovery, and maintenance to support pipeline section monitoring. The primary 
limitation of autonomous drones remains restricted operational duration due to battery capacity 
constraints. Even with contemporary lithium-ion batteries, modern quadcopters rarely sustain 
flight beyond 30 minutes. Drone ports address this limitation by providing infrastructure for drone 
recovery, recharging, and preparation for subsequent inspection missions. This infrastructure 
enables the establishment of continuous automated monitoring networks capable of rapid response 
to unforeseen operational incidents. 

80 
 



Biogeosystem Technique. 2025. 12(2) 

Such drone ports have already been implemented for monitoring terrestrial pipeline segments 
in remote terrain. For instance, the HIVE drone port (Figure 1) can replace a drone's battery in under 
three minutes. Additionally, it transmits acquired data to a central server and simultaneously charges 
up to four battery pairs. Through the HIVE system, drones maintain near-continuous operational 
readiness. In 2022, HIVE underwent field testing at facilities operated by SIBUR Holding. 
Previously, Moscow's municipal search and rescue service tested the drone port over water bodies. 
Deployment of HIVE commenced in Innopolis, Tatarstan, in 2020 (Zhang et al., 2021). 

 

 
 
Fig. 1. HIVE drone port, Russia 

 
Integrated with the drone port, a swarm of observation drones equipped with sensor arrays 

performs dual functions: acquiring data from pipeline-embedded sensors and conducting 
autonomous surveillance of pipeline infrastructure integrity and ambient environmental 
parameters – including air temperature and chemical composition – to detect leaks and support 
ecological monitoring. Such drones may be outfitted with high-resolution cameras, thermal 
imagers, gas analyzers, and supplementary sensors (Figures 2, 3; Faniadis, Amanatiadis, 2020). 

For marine pipeline segment inspection, deployment of a seabed platform connected to onshore 
energy and data resources via subsea cable is proposed. This platform would facilitate recharging of 
marine monitoring drone swarms and aggregate transmitted data for preprocessing, fusion, and relay 
to coastal monitoring stations. Development of such seabed platforms is currently underway. 

 

 
Fig. 2. DJI Matrice 300 RTK drone with Zenmuse H20T payload and U10 gas analyzer 
 

Underwater drones have gained utility in pipeline monitoring owing to their capacity to 
operate within inaccessible and hazardous submerged environments. These vehicles can descend to 
considerable depths, withstand saline water exposure, and capture high-fidelity imagery using 
integrated cameras – including 4K resolution systems. Control methodologies encompass tethered 
teleoperation, radio-frequency guidance, and fully autonomous navigation systems. 
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Fig. 3. Aboveground pipeline section 

 
Underwater pipeline inspection vehicles (UPIVs) represent specialized craft equipped with 

4K cameras, LED illumination systems, and sensor arrays capable of inspecting submerged 
infrastructure at depths ranging from 200 to 5,000 meters, thereby eliminating the need for 
hazardous diver operations. Prominent models such as the Chasing M2 Pro Max (Figure 4) 
incorporate sonar systems and manipulator arms for leak detection. This drone platform is 
engineered for complex subsea operations, inspections, and scientific research – enabling access to 
previously unreachable depths and facilitating investigations once deemed impracticable. 

 
Fig. 4. Chasing M2 Pro Max underwater drone 

 
Key advantages of the CHASING M2 PRO MAX include: 
1. A 4K UHD camera with high light sensitivity produces detailed, vivid imagery even at 

significant depths and under low-light conditions, enabling precise image recognition for problem 
classification. 

2. Modular architecture permits integration of supplementary equipment – including robotic 
manipulators, sonar systems, and specialized sensors – to address mission-specific requirements, 
affording exceptional operational flexibility. 

3. Operational depth capability extending to 200 meters unlocks new possibilities for subsea 
research, permitting inspections and documentation in previously inaccessible locations. 

4. Eight high-torque thrusters deliver superior maneuverability and stability in underwater 
currents, ensuring precise and reliable vehicle control under challenging hydrodynamic conditions. 
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5. Extended mission duration facilitated by swappable battery systems enables prolonged 
operations without frequent surfacing for recharging, thereby enhancing operational efficiency. 

6. Intuitive mobile application interface with integrated intelligent functions simplifies 
operation even during complex mission profiles. 

This industrial-grade underwater drone is designed for hydraulic structure inspection, vessel 
hull examination, drilling rig maintenance, pipeline and channel surveys, search and rescue 
operations, sediment and water sampling, and high-resolution video documentation. A coordinated 
system comprising multiple underwater drones and a drone port can rapidly and comprehensively 
inspect extended subsea pipeline segments, generating actionable intelligence for maintenance 
decision-making. 

All data transmitted by the drone swarm accumulates within the drone port's information 
repository. Given the multiplicity of drones, redundant measurements of identical parameters for 
the same object may be transmitted concurrently. Furthermore, noise interference may corrupt 
transmitted signals. Consequently, prior to database storage, data must undergo denoising and 
consistency verification through a data fusion procedure integrating information from coherent 
sources (Hafeez et al., 2021, Smagin, 2012). 

Following this filtering protocol, noise-reduced data – particularly slow trends – are archived 
within the monitoring information base. Data fusion redistributes the information flow, generating 
maxima and minima that more accurately reflect the monitored phenomenon. Integration of multi-
source information enhances measurement precision and reliability beyond the capabilities of any 
single data source. 

Sensor-acquired data undergo preliminary processing by the drone port's onboard processor 
to prevent heavily corrupted measurements from entering the operational database. Processed data 
are then accumulated in real time within the Blender 3D software suite's database to construct 
three-dimensional computer graphic models (Smagin, 2012). 

Effective noise filtering reduces measurement uncertainty and enhances sensor accuracy. 
This process must address two noise categories: persistent noise (additive white Gaussian noise) 
with relatively stable amplitude, and random impulse interference induced by external factors. 

Upon monitoring completion, all acquired information must be synthesized to generate a 
unified visual model representing both external and internal pipeline conditions (Marshal'ko et al., 
2023). For maintenance and repair planning, visualization through graphical and video modeling 
provides an effective decision-support tool. Blender 3D software offers a convenient platform for 
constructing such models, enabling generation of visual representations of pipeline external and 
internal structure based on filtered data. 

To prevent accidents and enhance pipeline operational safety and efficiency, autonomous 
monitoring systems incorporating artificial intelligence (AI) have been developed and deployed 
over recent (Islamov, et al., 2017; Askarov et al., 2018; Askarov et al., 2019; Tagirov et al., 2017; 
Iqbal et al., 2021; 2022; Erdelj et al., 2017). 

Contemporary integrated monitoring systems typically incorporate machine intelligence 
software-neural networks – whose predictive accuracy for identifying failure-prone locations 
averages 95 %, substantially exceeding conventional defect detection methodologies. 

AI-enabled software undergoes training using predefined parameters against databases 
containing extensive examples of adverse events and their consequences. This process enables the 
system to recognize correlations between input variables and expected outcomes, subsequently 
generating predictive models to identify or anticipate potential failures before they escalate into 
critical incidents (McDonald, 2019). For instance, the system may accurately detect equipment 
wear signatures or damage indicators and recommend appropriate remedial actions. 

The AI system receives real-time pipeline condition data from the central data aggregation 
hub – the drone port – which collects signals from pipeline monitoring points and observer drone 
swarms. Artificial intelligence processes and interprets these inputs to generate assessments of 
current network status (Akay, 2022). 

 
4. Conclusion 
The monitoring methodology proposed in this article – employing drone ports and drone 

swarms for data acquisition, noise reduction, and fusion of coherent data sources – enhances the 
efficiency of pipeline maintenance planning and execution. 
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Implementation of automated year-round monitoring systems will enable condition-based 
pipeline operation, thereby reducing operational expenditures while ensuring operational safety. 
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Abstract 
Mangrove forests play a vital role in coastal protection and biodiversity maintenance, yet they 

are under severe pressure from climate change and human activities. This study evaluates the 
effects of light and temperature on the photosynthetic performance of five mangrove species 
(Sonneratia alba, Avicennia alba, Excoecaria agallocha, Ceriops zippeliana, and Bruguiera 
gymnorrhiza) in the southern coastal region of Vietnam, aiming to clarify their adaptability to 
climate change. We measured key photosynthetic parameters (𝐴𝑚𝑎𝑥, light saturation point, and 
𝑇𝑜𝑝𝑡) at different canopy positions and analyzed their relationships with environmental variables. 
The results reveal significant differences in productivity and adaptation among species. Avicennia 
alba and Ceriops zippeliana exhibited higher photosynthetic capacity, while Excoecaria agallocha 
showed a higher light saturation point but lower productivity. The optimal temperature for 
photosynthesis ranged from 28–32 °C, with E. agallocha having a lower 𝑇𝑜𝑝𝑡. These findings 
highlight the physiological diversity and adaptive traits of mangrove species that influence their 
distribution and ecological success under changing climates. The study provides scientific evidence 
for species selection in mangrove restoration and sustainable management strategies in the context 
of climate adaptation. 

Keywords: mangrove plants, photosynthesis, climate change, light, temperature. 
 
1. Introduction 
Mangrove ecosystems play an exceptionally important role in environmental protection and 

the maintenance of biodiversity in coastal regions (Rahmadi et al., 2023), including in the southern 
areas of Vietnam (Dang et al., 2022). Mangrove forests not only provide habitats for numerous 
aquatic organisms and rare species of flora and fauna but also serve as a crucial natural barrier 
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protecting coastlines from erosion, mitigating the impacts of climate change, reducing wave 
energy, and preventing soil salinization (Nagelkerken et al., 2008; Rajpar, Zakaria, 2014). 
Moreover, these ecosystems offer significant economic and ecological benefits, such as fisheries 
resources, medicinal materials, and livelihoods for local communities (Bandaranayake, 1998; Hussain 
et al., 2010; Das et al., 2022). Therefore, the conservation and sustainable development of mangrove 
ecosystems have become an urgent task for scientists, environmental managers, and policy makers 
(Ferreira et al., 2022). 

Photosynthetic capacity plays a central role in the growth and development of mangrove 
plants, reflecting not only their ability to capture solar energy but also their adaptability to harsh 
environmental conditions such as salinity, oxygen deficiency, and temperature fluctuations (Joshi 
et al., 1984; Nandy et al., 2007). In the context of intensifying climate change, studies on the 
photosynthetic performance of mangroves are crucial for assessing their adaptability and 
developing appropriate conservation strategies (Gilman et al., 2008; Ellison, 2015). Factors 
influencing photosynthesis include atmospheric composition, light intensity, salinity, temperature, 
and ecological competition (Sand-Jensen, 1989; Lovelock et al., 2016; Wang et al., 2021). In recent 
years, modern analytical technologies-such as automated photosynthesis systems, portable 
photosynthetic sensors, and Infrared Gas Analyzers (IRGA)-have enabled researchers to measure 
and monitor photosynthetic processes quickly and accurately, thereby identifying key influencing 
factors and proposing effective management solutions to enhance ecosystem resilience (Field et al., 
1989; Tamayo et al., 2001; Douthe et al., 2018). 

Automated photosynthesis systems, for instance those using Non-Dispersive Infrared (NDIR) 
technology to measure CO₂ and H₂O concentrations, allow for precise and continuous monitoring 
of leaf photosynthesis and transpiration under controlled conditions (Hodgkinson et al., 2013; 
Rolle et al., 2018). Portable photosynthesis sensors-such as chlorophyll fluorescence meters-
provide a rapid and non-invasive method for evaluating photosynthetic performance and detecting 
early stress symptoms in plants (Dong et al., 2019; Herritt et al., 2020). Meanwhile, gas 
measurement instruments like the Infrared Gas Analyzer (IRGA) remain the standard tools for 
assessing leaf gas exchange rates and determining key physiological indicators such as 𝐴𝑚𝑎𝑥, CO₂ 
compensation point, and dark respiration (Toro et al., 2019; Macedo et al., 2021). 

In the southern coastal region of Vietnam, mangrove ecosystems are increasingly affected by 
climate change, urbanization, industrialization, and excessive resource exploitation (Thanh et al., 
2004; Giang et al., 2024). This region hosts many typical mangrove species such as Avicennia 
marina, Rhizophora apiculata, Sonneratia alba, and others that play essential roles in maintaining 
coastal ecological balance (Campbell, 2012; Warner et al. 2016; Do et al., 2022). However, 
physiological characteristics-especially photosynthetic capacity-of these species remain insufficiently 
investigated for conservation and sustainable management purposes. In fact, variations in 
photosynthetic performance can sensitively reflect negative environmental impacts (Krauss et al., 
2008; Rovai et al., 2013), thereby helping to identify species most suitable for changing conditions or 
management interventions to enhance ecosystem resilience (Dasgupta et al., 2011). 

Given the ecological importance of mangroves, studying the photosynthetic capacity of 
species in the southern coastal areas of Vietnam is essential to provide accurate and up-to-date 
physiological data under local environmental conditions. The main objectives of this paper are: 
(1) To evaluate the photosynthetic performance of several dominant mangrove species in southern 
Vietnam using modern analytical methods; and (2) To analyze environmental factors influencing 
their photosynthetic activity. The findings aim to provide a scientific foundation for practical 
applications in mangrove management, conservation, and sustainable development. This study not 
only supplies reliable physiological data but also enhances understanding of the ecological roles of 
mangrove species in coastal ecosystems, thereby supporting evidence-based conservation 
strategies and sustainable development initiatives. 

 
2. Materials and methods 
2.1. Study Species and Sites 
The study was conducted on five mangrove species: Sonneratia alba, Avicennia alba, 

Excoecaria agallocha, Ceriops zippeliana, and Bruguiera gymnorrhiza. Representative 
individuals of each species were randomly selected from seven distinct study sites to ensure healthy 
and consistent growth conditions (Figure 1). 
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Fig. 1. Location map of the study sites 

 
2.2. Sample Collection 
To ensure representativeness and objectivity, the sampling process was carefully performed 

in accordance with standard scientific protocols (Figure 2). The selection of branches for 
measurement followed the criteria below: 

Maturity: Selected branches carried fully mature leaves with a deep green color and stable 
size. Young, senescent, damaged, or diseased leaves were excluded. 

Canopy position: To evaluate differences in photosynthetic activity at various canopy heights, 
samples were collected from three vertical positions: Upper, middle, and lower canopy. These 
positions were defined based on their relative height from the canopy apex and corresponding light 
availability. 

Branch size: Each branch was cut to a length of 15–25 cm, ensuring a sufficient number of 
leaves for accurate measurement. 

Sampling time: Collections were conducted in the early morning (8:00-10:00 a.m.), when 
photosynthetic activity was high and environmental conditions (temperature and humidity) were 
relatively stable. 

Sample preservation: After cutting, branches were stored in polyethylene bags containing 
distilled water to maintain moisture and minimize dehydration. Samples were transported 
immediately to the laboratory and analyzed within two hours of collection. 

 

 
 
Fig. 2. Field collection and photosynthesis measurement of mangrove plants at study sites 
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Adhering to these criteria ensured that the collected samples were representative of 
mangrove populations in the study area and that photosynthetic measurements were accurate and 
reliable. 

2.3. Photosynthesis Measurement 
Photosynthetic parameters were measured using the portable photosynthesis system LI-

6800 (LI-COR Biosciences, Lincoln, Nebraska, USA) (LI-COR, 2023). The following environmental 
parameters were maintained within the measurement chamber: Leaf chamber air temperature: 
30°C; Relative humidity: 70 %; CO₂ concentration: 400 µmol mol⁻¹. Each sample measurement 
was completed within five minutes, yielding approximately 20 recorded data points per run. 

2.4. Data Analysis 
Assuming that the intercellular CO₂ concentration in the mesophyll (Ci) is known from 

experimental data, the relationship between photosynthetic rate and light intensity was described using 
the biochemical model for C₃ photosynthesis proposed by Farquhar (Farquhar et al., 1980), commonly 
referred to as the non-rectangular hyperbola model: 𝜽𝑨𝑨𝒈𝟐 −  𝑨𝑨𝒈(𝒎𝒎𝒊𝑸 + 𝑨𝑨𝒎𝒎𝒎𝒎𝒎𝒎) 𝑱 + 𝒎𝒎𝒊𝑸𝑨𝑨𝒎𝒎𝒎𝒎𝒎𝒎 = 0 

Net photosynthetic rate (𝐴𝑛) was calculated as: 𝑨𝑨𝒏 = 𝑨𝑨𝒈 − 𝑹𝒅 
Where: 𝑎𝑖 is the initial quantum yield (mol mol⁻¹); 𝐴𝑛 is the net photosynthetic rate; 𝐴𝑔 is the 

gross photosynthetic rate; 𝑅𝑑 is mitochondrial respiration (dark respiration); 𝐴𝑚𝑎𝑥 is the maximum 
photosynthetic rate, and 𝜃 is the curvature factor of the light response curve, reflecting the degree 
of nonlinearity of the electron transport response. The model mainly involves the following 
parameters: 

Initial quantum yield depends on 𝐶𝑖 (µmol mol -1), can be expressed by the Ball–Farquhar 
equation: 

𝒎𝒎𝒊 = 𝒎𝒎𝒊𝒐𝒐· (𝑪𝒊 − 𝜞) /( 𝑪𝒊 + 𝟐𝜞) 
Where  𝑎𝑖𝑜 is the maximum quantum yield of CO₂ assimilation and 𝛤 (µmol mol⁻¹) is the CO₂ 

compensation point under non-photorespiratory conditions. The value of 𝛤 increases with 
temperature due to the higher affinity of Rubisco for O₂ relative to CO₂. The relationship between 𝛤 
and leaf temperature (𝑇𝑘, in Kelvin) is described as (Farquhar et al., 1989): 𝜞 = 1,7 𝑻𝑻𝒌 

Intercellular CO₂ concentration (𝐶𝑠): 𝐶𝑠 varies with atmospheric CO₂ concentration (𝐶𝑎); 
𝐴𝑛 and stomatal conductance (𝑔𝑠). Under well-watered conditions, this relationship can be 
expressed using the semi-empirical Ball–Berry model (Ball et al., 1987): 

𝒈𝒔  = 𝜶𝑨𝑨𝒏·𝐑𝐇  
𝑪𝒔

 + 𝒈𝒐𝒐 
Where 𝑔𝑜 is the residual conductance (experimentally determined), RH is relative humidity at 

the leaf surface, 𝐶𝑠 is the CO₂ concentration at the leaf surface, and 𝛼 is an empirical coefficient. 
Leuning later modified this model by substituting relative humidity (RH) with vapor pressure 
deficit (VPD) (Leuning, 1995): 

𝒈𝒔  = 𝜶 𝑨𝑨𝒏  
(𝑪𝒊−𝜞)( 𝟏−𝑽𝑷𝑫/𝑽𝑷𝑫𝒐𝒐)

 + 𝒈𝒐𝒐 
At low light (I → 0), 𝐴𝑛 → 0, and assuming 𝑔𝑜 ≈ 0, we obtain: 

𝑪𝒊  =𝑪𝒔 − 𝜶(𝑪𝒔 − 𝜞)( 𝟏 + 𝑽𝑷𝑫
𝑽𝑷𝑫𝒐𝒐

) 

The maximum rate of photosynthesis 𝐴𝑚𝑎𝑥 is primarily limited by Rubisco enzyme activity 
and depends on CO₂ concentration and temperature: 

𝑨𝑨𝒎𝒎𝒎𝒎𝒎𝒎= 𝑽𝒎𝒎𝒎𝒎𝒎𝒎· (𝑪𝒔 − 𝜞)/( 𝑪𝒊 + 𝑪) 
Where 𝑉𝑚𝑎𝑥 is the maximum catalytic capacity of Rubisco per unit leaf area. The Michaelis 

constant (𝐶) for CO₂ and O₂ in the Rubisco reaction is treated as constant in this study. 
The temperature dependence of  𝑉𝑚𝑎𝑥 follows an Arrhenius-type relationship: 𝑽𝒎𝒎𝒎𝒎𝒎𝒎=𝑽𝒎𝒎𝟐𝟓{𝟏+
 𝒆𝒎𝒎𝒐𝒐[(−𝒎𝒎𝒍 + 𝒃𝑻𝑻𝒎𝒎)/𝑹𝑻𝑻𝒎𝒎]} −𝟏 

Where: 𝑉𝑚25 is the value at 25°C; 𝑎, 𝑏 is the activation energy; 𝑅 is the universal gas constant 
(8.314 J mol⁻¹ K⁻¹), and 𝑇𝑎 is absolute temperature (K). 

 
3. Results and discussion 
3.1. Dependence of Photosynthesis on Light Intensity and Temperature 
The measured data on photosynthetic parameters of mangrove species in the southern 

coastal areas of Vietnam are presented in Table 1. 
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Table 1. Photosynthetic parameters of mangrove species in the southern coastal region of Vietnam 
 

Species Leaf 
position 

𝑨𝑨𝒎𝒎𝒎𝒎𝒎𝒎 
(μmol m⁻² 

s⁻¹) 

Saturation 
PAR (μmol 

m⁻² s⁻¹) 

Rd (μmol 
m⁻² s⁻¹) 

Γ (μmol 
mol⁻¹) 

θ 𝑨𝑨𝒐𝒐𝒐𝒐𝒐𝒐 (μmol 
m⁻² s⁻¹) 

𝑻𝑻𝒐𝒐𝒐𝒐𝒐𝒐 (°C) 

S
on

n
er

a
ti

a
 

a
lb

a
 

Upper 
canopy 

6.2 ± 0.8 373 ± 13 -1.6 ± 0.2 15 ± 3 0.023 13.2 ± 0.4 31.7 ± 0.3 

Middle 
canopy 

4.9 ± 0.7 358 ± 11 -1.1 ± 0.2 17 ± 3 0.022 13.0 ± 0.3 31.7 ± 0.2 

Lower 
canopy 

3.8 ± 0.6 346 ± 12 -0.9 ± 0.2 16 ± 3 0.023 10.1 ± 0.3 30.5 ± 0.2 

A
vi

ce
n

n
ia

 
a

lb
a

 

Upper 
canopy 

10.2 ± 0.5 565 ± 17 -0.9 ± 0.2 12 ± 3 0.016 8.5 ± 0.5 29.3 ± 0.3 

Middle 
canopy 

8.5 ± 0.4 562 ± 13 -0.9 ± 0.2 11 ± 3 0.016 11.1 ± 0.3 31.1 ± 0.2 

Lower 
canopy 

7.7 ± 0.5 558 ± 9 -1.0 ± 0.2 12 ± 3 0.016 9.2 ± 0.3 28.7 ± 0.2 

E
xc

oe
ca

ri
a

 
a

g
a

ll
oc

h
a

 

Upper 
canopy 

3.4 ± 0.3 1031 ± 11 -0.7 ± 0.2 34 ± 3 0.32 7.9 ± 0.4 26.5 ± 0.4 

Middle 
canopy 

4.1 ± 0.3 1029 ± 18 -0.7 ± 0.2 31 ± 5 0.21 7.5 ± 0.4 30.1 ± 0.3 

Lower 
canopy 

4.0 ± 0.3 1003 ± 28 -0.6 ± 0.2 32 ± 7 0.25 7.4 ± 0.4 24.7 ± 0.2 

C
er

io
p

s 
zi

p
p

el
ia

n
a

 Upper 
canopy 

9.6 ± 0.4 531 ± 21 -0.7 ± 0.2 24 ± 5 0.02 14.3 ± 1.0 31.4 ± 0.4 

Middle 
canopy 

10.1 ± 0.3 559 ± 28 -0.9 ± 0.3 18 ± 7 0.018 11.6 ± 0.7 29.8 ± 0.3 

Lower 
canopy 

6.5 ± 0.3 527 ± 18 -1.7 ± 0.2 22 ± 4 0.021 10.3 ± 0.5 30.7 ± 0.2 

B
ru

g
u

ie
ra

 
g

y
m

n
oz

h
ir

a
 

Upper 
canopy 

8.2 ± 0.4 621 ± 13 -1.1 ± 0.2 21 ± 3 0.02 6.7 ± 0.3 28.8 ± 0.3 

Middle 
canopy 

7.6 ± 0.3 613 ± 15 -0.8 ± 0.2 21 ± 3 0.02 6.3 ± 0.2 28.0 ± 0.2 

Lower 
canopy 

7.5 ± 0.3 618 ± 20 -1.6 ± 0.2 21 ± 3 0.023 8.4 ± 0.2 28.2 ± 0.2 

 
Analysis of the photosynthetic parameters of the five mangrove species (Sonneratia alba, 

Avicennia alba, Excoecaria agallocha, Ceriops zippeliana, and Bruguiera gymnorrhiza) revealed 
considerable variation in photosynthetic capacity, light saturation point, and optimal temperature 
among species and leaf positions (Table 1). This reflects physiological and adaptive differences of 
each species to distinct environmental conditions. 

 
Fig. 3. Relationship between photosynthesis, light intensity, and temperature for Sonneratia alba. 
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The maximum photosynthetic rate (𝐴𝑚𝑎𝑥), a key indicator of photosynthetic capacity, ranged 
from 3.4 ± 0.3 μmol m⁻² s⁻¹ (Excoecaria agallocha) to 10.2 ± 0.5 μmol m⁻² s⁻¹ (Avicennia alba). 
This indicates that Avicennia alba and Ceriops zippeliana tend to achieve higher photosynthetic 
performance than Sonneratia alba, Bruguiera gymnorrhiza, and especially Excoecaria agallocha. 
Variations in 𝐴𝑚𝑎𝑥 values are often related to morphological and physiological traits such as leaf 
structure, chlorophyll content, and water-use efficiency. 

 
Fig. 4. Relationship between photosynthesis, light intensity, and temperature for Avicennia alba 

 
The light saturation point, representing the light intensity required to achieve maximum 

photosynthesis, also varied among species. Excoecaria agallocha had the highest light saturation 
point (1003 ± 28 to 1031 ± 11 μmol m⁻² s⁻¹), while the remaining species ranged between 346 ± 12 
and 621 ± 13 μmol m⁻² s⁻¹. This suggests that E. agallocha requires stronger light to reach optimal 
photosynthesis, whereas other species are better adapted to shaded or lower-light conditions. 

 

 
Fig. 5. Relationship between photosynthesis, light intensity, and temperature 
for Excoecaria agallocha 
 

𝑇𝑜𝑝𝑡 showed less variation among species compared to 𝐴𝑚𝑎𝑥 or light saturation points. Most 
species exhibited 𝑇𝑜𝑝𝑡 values between 28°C and 32°C, consistent with tropical environmental 
conditions. Excoecaria agallocha showed slightly lower 𝑇𝑜𝑝𝑡 values (24.7 ± 0.2 to 30.1 ± 0.3°C), 
suggesting greater tolerance to cooler conditions. 

Differences in photosynthetic capacity were also observed among canopy positions. 
Generally, 𝐴𝑚𝑎𝑥 decreased from the upper canopy to the lower canopy, corresponding to light 
availability. However, the extent of this reduction varied among species, reflecting differing 
adaptation strategies. 
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Fig. 6. Light and temperature dependence of photosynthesis in Ceriops zippeliana 
 

 
 
Fig. 7. Light and temperature dependence of photosynthesis in Bruguiera gymnorrhiza 

 
According to Table 2, Sonneratia alba showed the greatest decrease in 𝐴𝑚𝑎𝑥 (38.7 %), 

indicating significantly lower photosynthetic productivity in lower-canopy leaves. Bruguiera 
gymnorrhiza showed the smallest reduction (8.5 %), maintaining relatively high photosynthetic 
performance even under shade. Interestingly, Excoecaria agallocha showed a negative 𝐴𝑚𝑎𝑥 
reduction (-17.6 %), likely due to natural variability or increased exposure of lower leaves to 
diffused light. 

 
Table 2. Variation of 𝐴𝑚𝑎𝑥 by canopy position 
 

Species 𝑨𝑨𝒎𝒎𝒎𝒎𝒎𝒎 (Upper canopy) 𝑨𝑨𝒎𝒎𝒎𝒎𝒎𝒎 (Lower 
canopy) 

% Decrease 

Sonneratia alba 6.2 ± 0.8 3.8 ± 0.6 38.7% 
Avicennia alba 10.2 ± 0.5 7.7 ± 0.5 24.5% 

Excoecaria agallocha 3.4 ± 0.3 4.0 ± 0.3 -17.6% 
Ceriops zippeliana 9.6 ± 0.4 6.5 ± 0.3 32.3% 

Bruguiera gymnorrhiza 8.2 ± 0.4 7.5 ± 0.3 8.5% 
 
3.2. Comparison of Productivity and Adaptability among Mangrove Species 
Photosynthetic Productivity 
The maximum photosynthetic rate reflects the carbon fixation potential of plants. Results 

showed that Avicennia alba and Ceriops zippeliana achieved the highest 𝐴𝑚𝑎𝑥 values (10.2 ± 0.5 
and 9.6 ± 0.4 μmol m⁻² s⁻¹, respectively, at upper canopy leaves), suggesting higher light-use 
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efficiency and growth potential under favorable conditions. Conversely, Excoecaria agallocha 
exhibited the lowest 𝐴𝑚𝑎𝑥 (3.4 ± 0.3 μmol m⁻² s⁻¹), indicating energy limitations under low light or 
strong competition. 

𝐴𝑚𝑎𝑥 generally decreased from upper to lower canopy across most species, consistent with 
canopy light distribution. For instance, Sonneratia alba showed a pronounced reduction from 6.2 
± 0.8 to 3.8 ± 0.6 μmol m⁻² s⁻¹, suggesting light limitation and reduced photosynthetic 
performance in shaded leaves. 

Adaptation to Light Conditions 
The light saturation point reflects a species’ adaptation to light environments. Excoecaria 

agallocha exhibited the highest light saturation (>1000 μmol m⁻² s⁻¹), indicating a requirement 
for high light intensity and confirming its pioneer role in open, disturbed, or newly accreted areas. 
In contrast, Sonneratia alba and Bruguiera gymnorrhiza had lower light saturation points, 
reflecting better adaptation to shaded or low-light environments such as beneath dense canopies. 
The curvature factor (θ) further supported these findings: light-demanding species showed lower θ 
values, indicating higher light-use efficiency. 

Adaptation to Temperature 
 
Table 3. Variation of 𝑇𝑜𝑝𝑡 by canopy position 
 

Species Upper 
canopy 

Middle 
canopy 

Lower 
canopy 

Mean 𝑻𝑻𝒐𝒐𝒐𝒐𝒐𝒐 

Sonneratia alba 31.7 ± 0.3 31.7 ± 0.2 30.5 ± 0.2 31.3 ± 0.2 
Avicennia alba 29.3 ± 0.3 31.1 ± 0.2 28.7 ± 0.2 29.7 ± 1.0 
Excoecaria agallocha 26.5 ± 0.4 30.1 ± 0.3 24.7 ± 0.2 27.1 ± 2.3 
Ceriops zippeliana 31.4 ± 0.4 29.8 ± 0.3 30.7 ± 0.2 30.6 ± 0.6 
Bruguiera gymnorrhiza 28.8 ± 0.3 28.0 ± 0.2 28.2 ± 0.2 28.3 ± 0.4 

 
In general, most species exhibited 𝑇𝑜𝑝𝑡 values within the range of 28–32°C, suitable for 

tropical environmental conditions. 𝑇𝑜𝑝𝑡 varied slightly among species (Table 3). Sonneratia 
alba showed the highest mean 𝑇𝑜𝑝𝑡 (31.3 ± 0.2°C), indicating superior tolerance to higher 
temperatures. Excoecaria agallocha exhibited the lowest mean 𝑇𝑜𝑝𝑡 (27.1 ± 2.3°C), suggesting 
better adaptation to cooler environments. Other species had intermediate 𝑇𝑜𝑝𝑡 values (28.3–
30.6°C), consistent with tropical climatic conditions. 

 
3.3. Adaptive Potential under Climate Change Scenarios 
Based on the analysis of photosynthetic parameters, the adaptive responses of the five 

mangrove species were evaluated under climate change scenarios. 
Sonneratia alba demonstrated strong adaptability to temperature increases under both 

RCP4.5 and RCP8.5 scenarios. Rising temperatures, if not accompanied by water scarcity, could 
enhance carbon assimilation and population growth in this species. Avicennia alba adapted well 
under RCP4.5 but showed reduced tolerance under RCP8.5, as extreme heat may exceed the 
optimal range for mid-canopy leaves, indicating vulnerability to heat stress. 

Excoecaria agallocha was identified as sensitive to high solar radiation and unsuitable for 
areas with low rainfall and high annual sunshine. This species may struggle under hotter, drier 
climates. In contrast, Ceriops zippeliana exhibited strong light preference and adaptability to both 
RCP4.5 and RCP8.5 scenarios, showing flexible photosynthetic responses to increasing 
temperatures. Bruguiera gymnorrhiza also demonstrated resilience to thermal stress under both 
scenarios, with upper canopy leaves displaying superior resistance to heat and dehydration 
compared to lower leaves. 

These results collectively highlight interspecific differences in photosynthetic capacity and 
resilience, offering critical insights for selecting and managing mangrove species in climate 
adaptation and restoration strategies. 

 
3.4. Discussion 
In the context of climate change and its increasing impacts on mangrove ecosystems, 

understanding the photosynthetic characteristics of individual species is of great importance-not 
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only to better comprehend their adaptive capacities but also to support smart and effective 
management decisions (Cheeseman et al., 1991; Cheeseman et al., 1997). The results of this study 
reveal notable differences in photosynthetic productivity and adaptability among five mangrove 
species. Avicennia alba and Ceriops zippeliana exhibited higher 𝐴𝑚𝑎𝑥 values than the other 
species, whereas Excoecaria agallocha showed the highest light saturation point but the lowest 
𝐴𝑚𝑎𝑥. 𝑇𝑜𝑝𝑡 among species ranged between 28-32°C, although Excoecaria agallocha tended to have 
lower 𝑇𝑜𝑝𝑡 values. 

Differences in 𝐴𝑚𝑎𝑥 may reflect variations in survival strategies and distribution patterns 
among mangrove species. Avicennia alba and Ceriops zippeliana, with higher 𝐴𝑚𝑎𝑥 values, may be 
better adapted to nutrient-rich environments or possess a greater ability to compete for light. 
Conversely, Excoecaria agallocha, with its lower 𝐴𝑚𝑎𝑥, may be better suited to nutrient-poor or 
shaded environments (López‐Hoffman et al., 2006; Wang et al., 2021). Such differences in 𝐴𝑚𝑎𝑥 
are often associated with variations in leaf morphology, chlorophyll content, water-use efficiency, 
and stomatal regulation capacity (Chang et al., 2022). The high light saturation point of Excoecaria 
agallocha aligns with its ecological role as a pioneer species typically found in open, high-light 
environments. In contrast, species with lower light saturation points-such as Sonneratia alba and 
Bruguiera gymnorrhiza – are better adapted to shaded conditions, for example, under dense 
canopy cover (Farnsworth et al., 1996; Ball, 2002; Krauss et al., 2003). 

Differences in 𝑇𝑜𝑝𝑡  among species likely reflect adaptations to varying temperature regimes 
within the study region. The lower 𝑇𝑜𝑝𝑡 observed in Excoecaria agallocha suggests that this species 
may have originated from cooler habitats or possesses higher tolerance to lower temperatures (Field, 
1995; Quisthoudt et al., 2012). Our results are consistent with previous studies on the photosynthetic 
responses of mangrove species (Moorthy et al., 1999; Das et al., 2002). However, some variations 
may result from differences in measurement methods, environmental conditions, or genetic 
characteristics among populations (Gutiérrez-Rodríguez et al., 2000; Reynolds et al., 2000). 

Nevertheless, this study has several limitations that should be considered. First, 
measurements were conducted at a single time point (September 2023); thus, seasonal or 
environmental variations in photosynthetic performance could not be assessed (Suwa et al., 2008; 
Lele et al., 2021). Second, measurements were made only on mature leaves, so potential differences 
in photosynthetic response among developmental stages could not be evaluated (Okimoto et al., 
2008). Furthermore, only five mangrove species were examined, preventing broad generalizations 
across all mangrove taxa in the region. Future studies should aim to measure photosynthetic 
parameters seasonally, across developmental stages, and under diverse environmental conditions 
to better understand temporal and physiological variations (Kaipiainen, 2009). Expanding 
research to include additional mangrove species will also provide a more comprehensive 
understanding of species diversity and functional adaptation in mangrove ecosystems. 

The findings of this study have significant implications for understanding mangrove 
ecophysiology and for practical applications in mangrove restoration and management. Species 
selection for reforestation or rehabilitation projects can be guided by photosynthetic parameters 
such as 𝐴𝑚𝑎𝑥, light saturation point, and 𝑇𝑜𝑝𝑡. Moreover, understanding how environmental factors 
affect mangrove photosynthesis can inform effective management strategies for protecting and 
restoring these critical ecosystems. 

 
4. Conclusion 
This study elucidated the differences in photosynthetic capacity among five key mangrove 

species in the southern coastal region of Vietnam, providing valuable insights into their ecology 
and adaptive mechanisms. The results demonstrate that Avicennia alba and Ceriops 
zippeliana possess higher photosynthetic productivity, while Excoecaria agallocha shows 
adaptation to high light intensity and lower temperature conditions. These findings highlight not 
only the physiological diversity among mangrove species but also offer essential scientific 
foundations for conservation and restoration efforts under changing climatic conditions. Selecting 
species that best match local environmental parameters is a crucial factor in ensuring the success of 
restoration projects. 

For a more comprehensive understanding, future research should focus on assessing mangrove 
photosynthetic responses under varying environmental conditions (e.g., seasonal changes, salinity 
gradients, and pollution levels) and on examining genetic factors that may influence their adaptive 
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capacities. This study aims to contribute to raising awareness of the importance of mangrove 
conservation and to encourage concrete actions to protect these invaluable ecosystems for future 
generations. 
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Abstract 
The article examines the potential of forecasting methods to evaluate changes in the 

concentration of lithophilic chemical elements in soil samples, with a focus on scenarios in which 
limited monitoring data are available. The analysis is based on averaged chemical element 
concentrations, which enables assessment of the overall direction of change without reference to 
individual sampling points. This approach facilitates comparisons among elements, thereby 
allowing the identification of discrepancies in their temporal dynamics. The forecasts indicate that 
the concentrations of certain elements (Rb, Zr) remain unchanged, whereas those of others (Ba, Sr) 
show directional change or increased variability. It is imperative to account for this when 
interpreting pollution dynamics in the absence of detailed spatial data. 

Keywords: heavy metals, artificial intelligence, machine learning, linear regression, 
exponential smoothing.  

 
1. Introduction 
The existing geochemical classification of chemical elements is based on their 

physicochemical properties, which are crucial to the formation of various geochemical systems 
(Perelman, 1989). However, the modern cycle of substances, exacerbated by anthropogenic 
environmental interventions, has become an irreversible geochemical factor in chemical migration. 
It is primarily due to the geochemical composition of the еarth's surface. Actually, heavy metals are 
significant soil pollutants because they tend to accumulate and migrate through the soil over long 
periods (Gantulga et al., 2023; Sukiasyan et al., 2022). However, analyzing certain elements is 
difficult because they occur at trace and ultra-trace concentrations on the soil surface. Nonetheless, 
they form the foundation for the life and functioning of all biogeocenosis, from soils to living 
organisms. Lithophile elements stand out among these, mainly found in poorly soluble forms with 
low mobility and minimal participation in quick geochemical reactions (Isaev et al., 2025). Their 
behavior in soils mainly depends on the mineral makeup of parent rocks and overall geochemical 
conditions, rather than on local pollution sources. (Du Laing et al., 2009; Chougong et al., 2021). 
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Consequently, it is essential to develop practical methods for controlling and monitoring 
environmental pollution, since data gaps often result from technical challenges in selecting and 
implementing geochemical techniques for these investigations (Sokolov et al., 2016).  

In this context, employing artificial intelligence (AI) and machine learning (ML) models is 
crucial for real-time spatiotemporal environmental monitoring. This method addresses 
environmental challenges by handling diverse and often incomplete ecological data and integrating 
information on air, water, and soil quality assessments (Jordan et al., 2015; Xu et al., 2025). 
ML provides a more versatile and insightful analytical platform than traditional statistical 
methods, particularly for analyzing complex nonlinear relationships in geochemical systems 
(Shamsoddini, Esmaeil, 2023). ML also enables correction of anomalous values, identification of 
spatial trends, extraction of informative features, and improvement in the reliability of models for 
predicting the concentrations of chemical elements in natural environments (Ma et al., 2024; 
Alotaibi, Nassif, 2024).  

One significant benefit of ML is its ability to automatically identify subtle data patterns and 
make predictions without requiring predefined functional dependencies, thereby enhancing the 
robustness of environmental modelling amid high uncertainty (Hao et al., 2023). Integrating 
ML methods into environmental research is especially crucial for evaluating soil pollution, as these 
datasets exhibit complex spatiotemporal patterns and are influenced by various natural and 
human-made factors (Gunal et al., 2023). 

The article aims to address the practical challenge of enhancing environmental monitoring 
through AI and ML forecasting, particularly for assessing changes in soil chemical element 
concentrations when monitoring data are scarce. 

 
2. Materials and methods 
Soil samples were collected to a depth of 20 cm using the “envelope” method and non-

metallic tools under dry-weather conditions. Target lithophile elements, including Zr, Sr, Rb, and 
Ba, were selected for analysis of soil from various regions in Armenia. Element concentrations were 
measured in the laboratory following standardized procedures (Sukiasyan, Kirakosyan, 2024). 
The sampling coordinates are listed in Table 1. 

 
Table 1. Geographic coordinates of generalized sampling sites 
 

Sampling sites North West 

Hrazdan region 
H1 40°33'04.9" 44°44'42.1" 
H2 40°33'10.4" 44°44'46.5" 
H3 40°33'29.2" 44°44'43.2" 

Gavar region G1 40°20'29.0" 45°12'22.6" 
G2 40°20'23.2" 45°12'16.8" 

Martuni region M1 40°13'49.8" 45°12'17.1" 
M2 40°13'48.5" 45°12'06.0" 

 
The forecast model was built using data collected during a three-year monitoring period 

(2021–2023). These empirical data provided the foundation for modelling temporary fluctuations 
in concentrations. To ensure that forecasts of metal concentrations were physically realistic, 
a logarithmic transformation was applied before modelling. Specifically, the natural logarithm of 
the concentration values was computed as: 

zt = log (yt)      (1) 
where yt is the observed concentration at year t; zt is the transformed value. 
Two methods were used to model the temporal dynamics of Zr, Sr, Rb, and Ba 

concentrations: linear regression (LR) and exponential smoothing with a decaying trend (ETS) 
(Hyndman, Koehler, 2002; Koyande, 2024). LR was used to assess the trend direction (e.t, model 
the metal concentration as a linear function of time), and ETS was used to determine whether the 
trend was downward or stabilizing, extended to 2026: 

z�t+k = β0 + β1xt+k     (2) 
where: z�t+k is the future values of concentration in log-space at year xt+k; β0 is the intercept; 

β1 is the slope (rate of change over time). 
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The final predicted concentration can be calculated by: 
y�t+k = exp (z�t+k)     (3) 
ETS is a state-space model. An additive error with an additive damped trend configuration is 

commonly applied for non-seasonal, short-term environmental data. 
z�t+k  = lt−1 + Φbt−1 + εt    (4) 
lt = lt−1 +Φbt−1 + αεt     (5) 
bt = Φbt−1 + βεt     (6) 
where z�t+k  is the future values of concentration in log-space at year xt+k; ℓt is the level; bt is 

the damped trend; ϕ is the damping parameter (0 < ϕ < 1); α,β are smoothing parameters; εt is 
the forecast error. 

The final predicted concentration can be calculated by: 
y�t+k = exp (z�t+k)    (7) 
 
3. Results and discussion  
Lithophile elements are the main sources of rock-forming minerals in Earth's crust (Lozovik 

et al., 2020). They exist as stable ions that form compounds with silicon and oxygen, such as 
silicates and oxides. These ions influence hydrolysis, oxidation-reduction, complexation, and 
precipitation in water, aiding the transfer of ions from water to soil (Alekin, Lyakhin, 1984). Soil 
samples collected annually from 2021 to 2023 were analyzed for Zr, Sr, Rb, and Ba. Table 2 shows 
the concentrations of these chemical elements in the grouped soil samples by year of collection. 

 
Table 2. Concentration of the study lithophile element in soil sample 
 

Sampling 
sites 

Zr Sr Rb Ba 
2021 2022 2023 2021 2022 2023 2021 2022 2023 2021 2022 2023 

H1 192.1 211.3 141.5 400.1 485.2 383.7 70.6 73.1 51.4 395.2 549.1 436.3 
H2 335.3 228.2 211.0 468.2 396.5 359.8 77.7 63.9 53.6 477.4 447.2 570.7 
H3 212.9 286.5 212.0 498.1 472.8 347.0 71.2 71.2 48.2 476.1 465.8 495.1 

G1 186.7 184.3 147.0 527.4 565.0 515.3 60.8 57.7 41.6 436.3 537.8 578.9 

G2 177.9 179.5 148.5 540.0 604.3 557.3 56.9 53.8 38.2 438.0 471.7 581.7 

M1 173.3 179.4 132.1 381.1 408.5 341.7 73.4 68.8 50.2 284.3 393.4 382.3 

M2 191.4 175.1 120.7 386.1 381.1 377.8 72.4 66.4 52.3 408.9 404.9 367.1 

 
Then, to ensure reproducibility of the forecasting process, the numerical parameters of both 

predictive models (LR and ETS) are presented in Table 3.  
 

Table 3. Comparison of parameters of both models: linear regression (LR) and exponential 
smoothing with a decaying trend (ETS) 
 

Chemical 
element 

LR model ETS model 

Intercept, β0 Slope, β1 Level Trend Damping Initial 
Level 

Initial 
Trend 

Zr 286.41 -0.14 5.39 -0.14 0.995 209.94 -2.99 
Sr 112.04 -0.05 6.16 -0.05 0.995 457.29 17.53 

Rb 434.65 -0.21 4.29 -0.21 0.995 69.00 -3.00 

Ba -152.64 0.08 6.05 0.11 0.800 416.60 60.78 
 
Figure 1 shows projected changes in soil concentrations of Zr, Sr, Rb, and Ba through 2026. 

Specifically, it presents a 95 % confidence interval for LR and a ±10 % uncertainty range for ETS.  
Regarding Zr, the data up to 2023 show slight year-to-year variation, as seen in the 

simulation results. Subsequently, the LR model suggests a nearly flat trend through 2026, whereas 
the ETS model offers a smooth continuation of observed patterns with minor fluctuations. 
Throughout the forecast, the confidence intervals for both models remain narrow and only slightly 
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widen over time. Finally, the comparable widths of these intervals indicate low uncertainty and 
strong agreement between the models for Zr, consistent with its chemical inertia and incorporation 
into soil silicate phases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Forecast of Zr, Sr, Rb, and Ba concentrations in soils through 2026 using linear regression 
(LR) and exponential smoothing with a decaying trend (ETS) 

 
For Sr, LR suggests a weak directional trend that is consistently projected through 2026, 

indicating a modest expected change if current drivers persist. In contrast, ETS provides a 
smoother trajectory, signaling stability by actively preserving the present concentration level. 
The confidence intervals for both models gradually widen over the forecast period, a typical result 
of extrapolation, though they stay within observed value ranges. LR's slightly wider intervals 
compared to ETS's suggest this method is more responsive to year-to-year concentration 
variability, making it suitable for identifying shifts tied to short-term changes. This pattern reflects 
Sr’s chemical behavior, such as its susceptibility to isomorphic calcium substitution and 
involvement in slow ion-exchange processes, meaning model outputs track the potential influence 
of these known mechanisms.  

For Rb, the LR trend is very weak, with forecast values staying near the series' mean, 
suggesting no notable directional change under current conditions. The ETS model further flattens 
these dynamics, reinforcing an interpretation of long-term stability. Consistently narrow 
confidence intervals for both LR and ETS indicate little forecast uncertainty or expected change, 
which aligns with Rb's well-established fixation in potassium-rich soil minerals and amplifies 
confidence in status quo predictions. 

For Ba, the predicted results also show high stability. LR produces a smooth, steady forecast. 
ETS smooths the dynamics, avoiding extremes. The confidence intervals for Ba widen only slightly 
and are similar across models. This shows moderate forecast uncertainty. The pattern reflects Ba's 
stable geochemical behavior, linked to carbonate and exchange forms. These results support using 
these predictions without accounting for regional differences. Building on this consistency, it is 
useful to examine how model behavior compares for short-term soil sample changes. 
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Short-term changes in soil sample concentrations were estimated using aggregated, non-
spatial data. For Ba, both the LR and ETS models showed similar forecast directions and consistent 
trends. However, LR responded more to small, interannual fluctuations and produced more 
variable forecasts. ETS projections were more conservative, showing lower uncertainty over longer 
horizons. For lithophile elements, smoothing models like ETS are best, while LR supplements by 
gauging the overall trend. 

 
4. Conclusion 
Harnessing AI- and ML-based forecasting has unlocked new insights into spatiotemporal 

changes in lithophile element concentrations. When time-series data are limited, rely on ETS for a 
comprehensive assessment. For elements tightly bound to soil minerals and exhibiting low 
mobility, aggregated forecasting sharpens interpretation by highlighting stable background trends. 
Crucially, increasing model complexity or spatial detail yields only a slight improvement in forecast 
quality here. Ultimately, as our study affirms, align your model choice with both the data's 
statistical properties and the chemical characteristics of the elements. 
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