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Abstract

Mathematical forecasting methods were developed to evaluate the spatiotemporal dynamics
of trace elements, including Fe, Zn, Cu, Mn, Cr, and V, in soils at the study sites. To detect trends
and generate predictions, various models were employed, including linear and smoothing
techniques. The trace-element composition in the studied soils shows moderate variability, mostly
smooth and gradual, indicating the influence of long-term geochemical processes. Regional
differences also emerged, highlighting the unequal impact of natural conditions and human
activities on the trace-element background. These characteristics are crucial diagnostic tools for
analyzing forecast results.

Keyword: trace metals, machine learning, spatiotemporal dynamics, linear regression,
LOESS regression.

1. Introduction

Protecting the environment from pollution is critical to ensuring public safety and sustainable
development. Natural environmental changes, alternating with anthropogenic impacts, alter natural
geochemical cycles. A combination of the climatic factors, territory's lithological and geochemical
features, soil formation conditions, and the intensity of economic activity determines the formation
of spatial anomalies and temporal trends in chemical element content, especially heavy metals (HMs)
(Sukiasyan et al., 2025). The situation is complicated by the fact that in the natural biogeochemical
processes the HMs can accumulate and migrate within the soil, creating a long-term environmental
hazard (Gall et al., 2015). Chemicals contaminating soil with HMs, mainly due to erosion and organic
matter loss, are the primary results of declining soil fertility (Smith et al., 2024). The dynamics of
HMs accumulation and migration in soils are determined by multiple physical, chemical, biological,
and climatic factors (Zaky, Elwa, 2020; Kicinska et al., 2022).

* Corresponding author
E-mail addresses: sukiasyan.astghik@gmail.com (A. Sukiasyan)

63



mailto:sukiasyan.astghik@gmail.com

Biogeosystem Technique. 2025. 12(2)

However, the key determinants are the area's natural features such as relief, water
permeability, and soil horizon’s structure (de Matos et al., 2001). It has been established that small
particles of HMs are washed from the upper slopes, leading to the formation of accumulation zones
in the lower parts of the terrain (Ding et al., 2017). It is clear that achieving the Sustainable
Development Goals requires moving towards integrated monitoring systems that account not only
for the total content of elements but also for their chemical distribution in the soil environment,
mobility, and availability to living organisms (Toth et al., 2016).

In recent years, ecological research has increasingly shifted from basic measurements of
metal content to detailed evaluations of their environmental risks. The use of multivariate
statistical methods, geoinformation technologies, and ecological risk indices enables researchers to
identify sources, spatial distributions, and potential threats. This progression lays the groundwork
for scientifically grounded pollution control and impact mitigation strategies (Gong et al., 2024).

Spatiotemporal changes in the chemical composition of soils are a key focus in environmental
research, as soils act as accumulators and converters of elemental constituents, reflecting both
natural and anthropogenic processes (Shi et al., 2023). The development of spatial anomalies and
temporal trends in soil element content results from a combination of climate factors, lithological
and geochemical terrains, soil formation conditions, and moderate economic activity (Zhuo et al.,
2019). Analysing these changes helps evaluate the current condition of ecosystems and guides their
future development. Among HMs, trace elements (TEs) are particularly prominent; they occur at
much lower concentrations but play a crucial role in the functioning of biological and geochemical
systems (Sukiasyan, Kirakosyan, 2024).

TEs are involved in oxidation-reduction processes. They regulate other chemical elements
migration. TEs respond to environmental changes, and indicate the soils mineralogical features
and the soils long-term chemical variations (Zhang et al., 2022; Xu et al., 2023; Islam et al., 2023).
A typical feature of the content of TEs in the soil cover is its spatial and temporal variability (Wang
et al., 2020; Taghizadeh-Mehrjardi et al., 2021). This is why modern research is increasingly aimed
not only at describing soils' current conditions but also at creating predictive models for their
spatiotemporal changes (Cérdoba et al., 2025).

The aim of this study is to analyze the spatiotemporal dynamics of selected TEs in soil
samples from different regions of Armenia, drawing on multi-year monitoring data, with a focus on
predicting changes in their concentrations using mathematical models.

2. Materials and methods

The study is based on monitoring data on the content of TEs Fe, Zn) Cu, Mn, Cr and V) in the
soils of the regions Gegharkunik (Gavar and Martuni sites) and Kotayk (Hrazdan sites) is situated
in the eastern part of Armenia (Figure. 1). At least five soil samples from the same site at the
control points, obtained using the envelope method to a depth of up to 20 cm, were mixed.
The samples were subsequently placed in dark glass containers and transported at +4°C for
24 hours for instrumental measurements in the laboratory. Direct X-ray exposure was used for
elemental analysis of all soil samples using a portable XRF analyser (Thermo Scientific™ Niton™)
(Sukiasyan et al., 2022).

Kotayk region | | ¢+ Gegharkunik region [
|
|
|

Hrazdan

g ah

Proximate maps scale: 1:250000

Fig. 1. Soil sampling region of Armenia
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The initial time series spans from 2021 to 2023 and shows the average regional element
concentrations. For analysis, averaged indicators across regions were utilised to focus on common
spatiotemporal patterns. To create and forecast the temporal behaviour of TEs, various
mathematical models were employed, including linear regression (LR), exponential smoothing
(ETS), and locally estimated scatterplot smoothing (LOESS) regression (Hyndman, Koehler, 2002;
Koyande, 2024). LOESS is a non-parametric regression method that performs local polynomial
fits. It applies a low-degree polynomial to data subsets using weighted least squares, where the
weights depend on the distance to the target point. This approach is particularly effective at
identifying non-linear patterns, such as sudden rises or falls in metal levels. For each metal,
a second-degree polynomial was fitted using LOESS, producing a locally adaptive model that
predicts smooth, flexible future trends (Cleveland, Devlin, 1988).

The fitted polynomial takes the general form:

Zerr = Bi=q wi(t +K)Pi(t + k) )

where: Z;, - is the future values of concentration in log-space at year x;,; P;(t + k) is a local
polynomial (degree 2); w;(t + k) are weights based on proximity to t, controlled by a span
parameter.

Coefficients of the fitted curve:

Jp=a-t>+b-t+cy 2

where a, b, and c are coefficients determined through local fitting.

The final predicted concentration can be calculated by:

Ve = €xp(Zeix) 3

Model parameters were estimated individually for each TE and site. A comparative analysis
of these results helped evaluate the consistency of the forecasts and the robustness of the identified
trends. Forecasts were made for 2024-2026 to analyse changes in soil TE composition.

Data processing and model development employed standard statistical methods. Results
were interpreted considering established geochemical mechanisms that control the migration and
accumulation of TEs in soils.

3. Results and discussion

The selection of Zn, Cu, Fe, Mn, Cr, and V for regional analysis is due to their physicochemical
characteristics, marked by high chemical reactivity in soil and strong responsiveness to local
geochemical conditions. Based on the concentration data, a forecast of the temporal behaviour of TEs
was created using mathematical models, including LR, ETS, and LOESS (Tables 1-3).

Table 1. Parameters of the linear regression model for soil sampling sites

race Element

Zn Cu Fe Mn Cr \Y
Parameters
Hrazdan sites
Intercept 0 -251.02 171.45 -342.42 -52.56 735.68 -557.29
Slope B, 0.13 -0.08 0.17 0.03 -0.37 0.28
Gavar sites
Intercept 0 -46.17 -153.11 -165.31 -151.53 557.94 -453.42
Slope B, 0.02 -0.07 0.09 0.08 -0.28 0.23
Martuni sites
Intercept g0 186.70 299.65 -141.66 126.75 -350.33 -380.33
Slope B4 -0.09 -0.15 0.8 -0.06 0.18 0.19
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Table 2. Parameters of the exponential smoothing model for soil sampling sites

Trace Element
Zn Cu Fe Mn Cr \Y
Parameters
Hrazdan sites

Level 4.56 4.41 10.23 6.72 4.45 4.72
Trend 0.13 -0.12 0.17 0.03 0.37 0.28
Damping 0.995 0.800 0.995 0.995 0.995 0.995
Initial Level 99.27 85.10 29633.10 849.07 97.73 124.87
Initial Trend 0.03 -16.53 -1772.30 -26.23 -3.03 -2.77

Gavar sites

Level 450 4.41 10.48 6.66 4.62 4.78
Trend 0.04 -0.11 0.090 0.08 0.28 0.23
Damping 0.80 0.80 0.995 0.995 0.995 0.995
Initial Level 84.40 38515.00 819.65 113.30 113.50 130.55
Initial Trend -13.27 -5694.33 -63.95 -5.80 -5.80 -4.38

Martuni sites

Level 4.47 4.26 10.33 6.63 4.85 4.67

Trend -0.09 -0.21 0.08 -0.06 0.17 0.19
Damping 0.995 0.800 0.995 0.995 0.995 0.995
Initial Level 71.80 31548.45 737.40 135.30 135.30 116.55

Initial Trend -14.35 -700.75 4.10 -3.35 -3.35 -7.85

Table 3. Parameters of the locally weighted scatterplot smoothing model for soil sampling sites

race Element
Zn Fe Mn Cr \Y
Parameters
Hrazdan sites
a 0.13 0.13 0.24 0.06 0.40 0.30
b -509.92 -539.41 -954.84 -245.51 -1608.13 -1214.92
c 5.15e+05 | 5.45e+05 9.65e+05 2.48e+05 1.63e+06 1.23e+06
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Gavar sites

-0.11 0.10 0.247 0.16 0.33

0.26

430.53 -394.08 -988.66 -644.96 -1337.90

-1054.75

3.99e+05 1.0le+06 | 6.52e+05 1.35e+06

4.35e+05

1.07e+06

Martuni sites

-0.06 0.08 0.10 0.26 0.20

0.26

256.64 -310.73 -394.90 -1053.07 -811.55

-1052.18

1.06e+06

Using the specified parameters, predicted changes in TE concentrations in soil samples
across all research sites through 2026 were modelled using LR, ETS, and LOESS (Figure 2).
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Fig. 2. Predicted trajectories of change in TE concentrations (Zn, Cu, Fe, Mn, Cr, and V) in the
soils at the Hrazdan, Martuni, and Gavar sites up to 2026
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For Zn, regional differences are particularly notable. At the Hrazdan sites, LR captures the
ongoing directional trends over the forecast period, whereas ETS smooths fluctuations to produce a
more stable trajectory. LOESS highlights local nonlinear patterns, influenced by regional factors.
At Gavar and Martuni, forecast curves are more stable with minimal differences between LR and ETS,
while LOESS shows slight deviations. Confidence intervals for Zn expand over time, especially for LR
and LOESS, but remain within the observed range, supporting forecast interpretation. This pattern
aligns with Zn's chemistry as a moderately mobile element influenced by pH and organic matter.

Cu concentration in all three regions is highly consistent across models. The predicted LR
trajectories are smooth; ETS further diminishes fluctuations, and LOESS uncovers only minor
nonlinear effects. Regional variations are moderate and do not cause significant differences in
forecast estimates. Confidence intervals are relatively narrow and gradually widen without sudden
jumps. This forecast stability is consistent with copper's chemical behaviour in soil, where it tends
to bind strongly to organic matter and mineral components, restricting its movement and
stabilising its temporal dynamics, even in the presence of anthropogenic activities.

Cu concentration in all three regions is highly consistent across models. The predicted LR
trajectories are smooth; ETS further diminishes fluctuations, and LOESS uncovers only minor
nonlinear effects. Regional variations are moderate and do not cause significant differences in
forecast estimates. Confidence intervals are relatively narrow and gradually widen without sudden
jumps. This forecast stability is consistent with copper's chemical behaviour in soil, where it tends
to bind strongly to organic matter and mineral components, restricting its movement and
stabilising its temporal dynamics, even in the presence of anthropogenic activities.

A notably different perspective emerges when examining Fe. Even after considering regional
differences, all models show marked forecast volatility. LR predicts sharply rising trends in all
regions, ETS enhances this trend, and LOESS highlights the nonlinear complexity of the time
series. Confidence intervals widen quickly and considerably, especially in 2025-2026, signalling
high uncertainty in future estimates. This model volatility underscores iron's fundamental role as a
redox-sensitive element and a key geochemical regulator: transitions between Fe2* and Fe3* are
linked to oxide phase formation, causing sudden and hard-to-predict shifts in concentrations.

Similar patterns have been observed for Mn. At the Hrazdan sites, the LR and ETS forecast
curves show growth, while LOESS produces trajectories with sharp bends, highlighting the
nonlinear nature of the dynamics. At the Gavar sites, the forecasts are somewhat smoother, but the
overall trend of high variability remains. Confidence intervals quickly widen and become
disproportionately large, signaling low forecast stability. This behaviour aligns with the chemical
properties of Mn, which, like Fe, participates actively in redox reactions and can significantly
change its soil speciation (Mn2+*/Mn4+) with minor pH shifts.

Regarding Cr, regional analysis also fails to produce stable forecast estimates. In all regions,
LR shows sharp upward trends, ETS amplifies the growth trend, and LOESS highlights the strong
nonlinearity of the time series. Predicted values quickly surpass observed levels, and confidence
intervals expand substantially. This indicates Cr's valence instability and significant differences in
the mobility and toxicity of its various forms, meaning even minor environmental changes can
cause disproportionate concentration shifts.

Finally, V behaves similarly to Cr and Mn. Overall, the LR and ETS projections show a clear
upward trend across all sites, with LOESS capturing sharp local variations. Confidence intervals
widen quickly and peak at the end of the forecast, suggesting vanadium's dynamics are highly
unpredictable. This pattern is consistent with its chemistry, which features a complex valence
system and high redox sensitivity.

4. Conclusion

A comparison of forecasting methods revealed notable differences. LR was sensitive to
directional shifts and best captured overall trends in regions with stable dynamics. However, under
high variability, it often overestimated predictions. ETS proved effective at smoothing short-term
fluctuations and providing more stable forecasts for elements with moderate reactivity, such as Zn and
Cu. Yet this method does not accurately model systems with strong redox-dependent dynamics.

Using LOESS allowed the detection of local nonlinear features in the time series that parametric
models miss. This method was especially useful for analyzing spatial differences, but its predictive
stability diminishes with shorter time series, restricting its effectiveness for long-term forecasts.
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The results indicated that regional forecasting provides clear and consistent estimates for
chemically stable and complexing elements like Zn and Cu. However, for redox-sensitive elements
such as Fe, Mn, Cr, and V, significant uncertainty persists even when using a spatial approach. This
highlights the inherent limitations of time-based models in accurately representing elements whose
concentrations are more influenced by changes in soil physicochemical conditions than by
temporal variations.
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Abstract

The article is devoted to the issues of organization of monitoring and control of invasive
plants growing in hard-to-reach places using a swarm of drones and a drone port. Sosnovsky's
hogweed has spread widely in Russia and is actively seizing new areas, creating infestation steps
that are difficult to control using traditional methods. Monitoring and elimination of such foci by
traditional manual methods is time-consuming, ineffective and unsafe.

A new technology that provides rapid monitoring of large areas and targeted chemical
intervention only where necessary, reducing the risk of damage from invasions and the use of
pesticides, is a technology based on the use of a drone swarm in conjunction with a drone port.
It allows you to quickly explore large areas and get detailed images of growing vegetation from
different angles. The resulting images can be recognized by means of artificial intelligence,
analyzing the density of growth of invasive plants and their proximity to other crops.

The data collected by agrodrones can be conditionally divided into digital and graphical.
When receiving digital data from a swarm of drones, the information on the drone port is cleaned
of noise and checked for consistency to ensure the reliability of the data, which improves the
efficiency of system maintenance. For graphic data, first of all, color correction is used, restoring
color details and increasing clarity, while restoring the natural image distorted at the time of
digitization and subsequent processing.

The key issue is the merging of the data collected by the agrodron swarm. Different specimens
of agrodrons can receive different parameters and different images of the same habitat of invasive

* Corresponding author
E-mail addresses: ecobaltica@gmail.com (V.Yu. Rud)

71




Biogeosystem Technique. 2025. 12(2)

plants, and these data need to be linked to each other, eliminating contradictions. After building a
consistent model of the area, the growing plants are recognized using artificial intelligence.

The described technology allows automated analysis of the vegetation condition and provides
conclusions and recommendations based on artificial intelligence.

Keywords: invasive plants, swarm of agricultural drones, data cleaning, data fusion.

1. Problem Statement of Monitoring

Weed infestation presents a pressing issue in agriculture, significantly reducing crop yields
and, in certain cases, posing serious threats to ecosystems, agricultural productivity, and human
health. In Russia, the spread of Heracleum sosnowskyi (Sosnowsky’s hogweed) is particularly
acute. This plant forms dense thickets up to 3 meters tall and secretes a toxic sap that causes severe
phytophotodermatitis in humans. Ambrosia artemisiifolia (common ragweed) has become
widespread in southern regions, triggering potent allergic reactions — its pollen being a notorious
allergen — and diminishing field productivity (Mullerové, 2024) Solidago canadensis (Canada
goldenrod) and related species aggressively displace native flora, establishing monocultures that
degrade pollinator habitats and disrupt ecosystem services These and other invasive weeds
continuously colonize new territories, creating invasion foci that are difficult to control using
conventional methods.

Traditional manual approaches to monitoring and eradicating such infestations are labor-
intensive, time-consuming, inefficient, and potentially hazardous. For example, ground-based
surveys of hogweed-infested areas are impeded by the risk of chemical burns while locating
ragweed across expansive fields demands substantial human resources. Moreover, blanket
pesticide application over entire fields results in excessive chemical loading on the environment.
Thus, novel technologies are required that enable rapid, large-scale monitoring and facilitate
precise, localized interventions only where necessary — thereby mitigating ecological damage and
minimizing chemical usage.

The advancement of unmanned aerial vehicles (UAVs), or agricultural drones, offers
transformative potential in addressing this challenge. UAVs allow rapid coverage of extensive areas
and provide high-resolution visual data through aerial imagery (Figure 1). They enable timely and
comprehensive field inspections, facilitate the identification of weed clusters, reduce inspection
time, and permit detailed, multi-angle examination of detected infestations (Monteiro, Santos,
2022). Artificial intelligence (Al) algorithms can then be applied to classify plant species visible in
the captured images (Dutech, Scherrer, 2013).

Although the deployment of agricultural UAVs remains somewhat limited in Russia at
present, the topic of agro-drones remains highly relevant — not only domestically but globally.
Increasingly, “smart” technological solutions are emerging that reduce operational costs and
optimize agro-industrial complex (AIC) workflows. Drones play a pivotal role in the digital
transformation of the AIC. Consequently, UAV developers continue to introduce increasingly
sophisticated and multifunctional models tailored to diverse agricultural tasks.

-";"w

Fig. 1. Application of agricultural drones in farming
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Of particular interest is the use of drone swarms — coordinated groups of UAVs operating in
conjunction with a central droneport. While a single drone is constrained by flight range and
endurance, a swarm can efficiently cover large areas and complete missions far more effectively.
Cooperative control necessitates robust inter-drone communication and avoidance of task
duplication. Modern algorithms enable real-time data exchange and collaborative coverage path
planning, wherein each UAV autonomously computes its flight trajectory while accounting for the
plans of others. Distributed coordination and information sharing maximize area coverage while
minimizing energy consumption. A key challenge lies in the preliminary processing and cleaning of
acquired data, as well as its fusion across multiple UAVs and the resolution of inconsistencies
between overlapping observations.

2. Hardware Configuration for Monitoring

To perform monitoring tasks effectively, a drone must be equipped with the following
instrumentation:

1. A high-resolution camera for capturing detailed imagery;

2. An ultrasonic sensor for obstacle detection and collision avoidance;

3. A Bluetooth module for short-range data transmission;

4. A GPS receiver for geotagging the location of each data capture;

5. An accelerometer for maintaining horizontal stabilization and minimizing deviations;

6. A barometric sensor (barometer) for altitude hold;

7. An autopilot system for autonomous waypoint navigation and return-to-home
functionality.

The drone must incorporate obstacle-avoidance sensors capable of triggering evasive
maneuvers upon detecting obstructions. Its internal control system should enable autonomous
flight along pre-defined routes even in the event of communication loss with the ground control
station.

The drone must be outfitted with a high-resolution camera, as it is required to approach a
designated field segment, descend to a low altitude, and capture multiple high-quality images.
Upon mission completion, the collected data must be transmitted to the droneport, where
specialized software leveraging Al algorithms performs subsequent analysis and interpretation.

3. Data Cleaning

Data acquired by agricultural drones can be broadly categorized into two types: digital
(numerical sensor readings) and graphical (imagery).

All transmitted and received signals inherently contain noise — defined as any undesirable
signal component superimposed on the ideal signal. In digital wireless communication systems,
the ideal signal resembles a trapezoidal pulse, which becomes distorted in the presence of noise
(Figure 2; Li, 2009).

hit «1»

signal
with noise

clean
signal

Amplitude, A

bit «0» bit «0»

-

Time, t

Fig. 2. Ideal vs. real signal waveforms

Deviations from the ideal can be observed in both time (temporal jitter) and amplitude
(amplitude noise). In radio-frequency systems, signal amplitude corresponds to power; thus, amplitude
deviation (dA) represents amplitude noise, while temporal deviation (dt) constitutes jitter.
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Jitter-unwanted timing instability — manifests as fluctuations in the temporal positioning of
signal transitions relative to their nominal values. It arises from synchronization instability and
channel path variations. Jitter comprises two components: a purely random (stochastic)
component and a quasi-deterministic, typically low-frequency component known as wander
(Smagin, 2012).

The effects of jitter and amplitude noise on system performance are asymmetric. Amplitude
noise acts as a continuous function, exerting a persistent influence on system characteristics.
In contrast, jitter affects the system only during signal edge transitions.

Signal integrity is generally defined as any deviation from the ideal signal waveform. Thus,
it encompasses both amplitude noise and jitter. However, certain integrity issues — such as
undershoot, overshoot, and signal ringing — cannot be fully characterized solely by jitter and noise
metrics (Figure 3).

Positive spike —» Ringing artifact

Megative spike

Fig. 3. Characteristics of signal integrity

The combined impact of jitter and amplitude noise is best evaluated from the perspective of
the receiver in a communication system. The receiver samples the incoming pulse at time t using a
voltage threshold v (Figure 4). In the ideal case, sampling occurs at the center of the input pulse.
If the rising and falling edge times satisfy t<sub>f</sub> < t<sub>s</sub> and the signal voltage
V<sub>1</sub> > v<sub>s</sub>, the system correctly registers a logical “1” (Figure 4a).

In the presence of jitter and noise, signal edges shift along the time axis and voltage levels
fluctuate along the amplitude axis. This may violate the conditions for correct bit detection, leading
to bit errors (e.g., a logical “1” misinterpreted as “0”). Three failure modes may occur during
“1” detection:

1. The rising edge crosses the threshold after the sampling instant (t<sub>f</sub> >
t<sub>s</sub>);

2. The falling edge crosses before the sampling instant (t<sub>f</sub> < t<sub>s</sub>);

3. The signal voltage falls below the threshold (V<sub>1</sub> < v<sub>s</sub>).

For logical “0” detection (Figure 4b), correct sampling requires t<sub>r</sub> <
t<sub>s</sub> < t<sub>f</sub> and V<sub>0</sub> < v<sub>s</sub>. Violations mirror those
for “1,” except that V<sub>0</sub> > v<sub>s</sub> leads to error.

Logical «1s v,

a) )

Fig. 4. Receiver-based sampling of input data

Given that digital systems transmit numerous bits over time, overall performance is
commonly quantified by the Bit Error Rate (BER) — the ratio of erroneous bits (N<sub>err</sub>)
to total transmitted bits (N<sub>tot</sub>). BER serves as a fundamental quality metric for
communication systems. At multi-gigabit-per-second data rates, standards such as Fibre Channel,
Gigabit Ethernet, SONET, and PCI Express typically require BER < 10<sup>-12</sup>, meaning
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no more than one error per trillion bits. Higher BER degrades network efficiency and increases
system latency. BER depends on data rate, jitter, and noise, and — being statistical — is often
analyzed using Poisson statistics.

Jitter and noise originate from numerous physical and systemic sources, broadly classified as
intrinsic and extrinsic. Intrinsic sources stem from the stochastic behavior of electrons and holes in
semiconductor devices and represent fundamental physical limits that cannot be fully eliminated —
though they may be minimized. Extrinsic sources arise from system design and configuration and
are thus potentially correctable.

Intrinsic noise primarily results from thermal and shot noise in electronic and optoelectronic
components, setting baseline constraints on system dynamic range. Noise is typically quantified in
terms of voltage, current, or power — collectively referred to as “amplitude.” When amplitude noise
AA(t) is superimposed on a base signal A<sub>0</sub>(t), the corresponding timing jitter can be
approximated via linear small-signal perturbation theory:

$$

\Delta t \approx \frac{\Delta A(t)}{dA_0/dt}

$$

where dA<sub>0</sub>/dt is the signal slew rate (Figure 5). Thus, for a given amplitude
noise level, timing jitter decreases as the signal edge steepness increases — highlighting the benefit
of minimizing rise/fall times to reduce jitter.

.
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Amplitude, A
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At

t

Time,
Fig. 5. Conversion of amplitude noise into timing jitter according to linear perturbation theory

Extrinsic noise and jitter arise from system-level imperfections and are amenable to
mitigation. Common types include periodic modulation (phase, amplitude, or frequency), duty
cycle distortion, inter-symbol interference, crosstalk, electromagnetic interference (EMI), and
reflections due to impedance mismatches.

Digitally acquired sensor data undergoes preliminary filtering on board the drone or at the
droneport processor to prevent heavily corrupted data from entering the operational database.
Cleaned data is then accumulated in real time within a centralized data repository.

Effective noise filtering enhances measurement accuracy (Baklanov, 1998) and sensor
reliability. Two primary noise types must be addressed: (1) stationary (additive white Gaussian
noise) with relatively stable amplitude, and (2) impulsive noise caused by external disturbances.

For stationary noise, the moving average filter is well-suited: it maintains a buffer of recent
measurements and shifts the observation window forward with each new sample. Although this
method involves floating-point calculations that slightly slow processing, the overhead remains
negligible compared to data transmission latency (FourWeekMBA, 2025).

Impulsive noise within individual measurements is best mitigated using a median filter
(Smagin, 2012). Empirical studies show that combining median filtering with moving average
yields robust results.

Of special interest is the filtering of the quasi-deterministic jitter component, which primarily
reflects hardware-specific characteristics. To isolate this component, we propose the “Caterpillar”
method — also known as Singular Spectrum Analysis (SSA). A key advantage of SSA is that it
requires no prior model of the jitter process. SSA decomposes a time series into interpretable
components (trend, periodicities, noise) by embedding the series into a trajectory matrix,
performing singular value decomposition (SVD), and reconstructing selected components. This
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approach outperforms conventional time-series methods in separating structured signal features
from noise.

Following onboard preprocessing, cleaned data is transmitted via communication channels to
the central droneport computer for advanced analysis.

Graphical data — i.e., aerial imagery — also requires cleaning. This includes correcting or
removing corrupted information such as duplicates, missing values, incorrect formats, and outliers.

Color correction is an essential step in digital image processing. Manual white balance
settings on cameras often introduce uncontrolled color inaccuracies. Although modern image
editors provide powerful correction tools, manual intervention is impractical in high-throughput
workflows. Fortunately, automated color correction solutions exist.

Image quality enhancement focuses on restoring natural color fidelity and improving
sharpness — reversing distortions introduced during capture or digitization. Advanced algorithms
automatically identify regions requiring adjustment (e.g., color balance, brightness, contrast) and
apply localized corrections. These systems also address common artifacts such as moiré patterns
and color casts.

Sophisticated color grading leverages blending algorithms and lookup tables (LUTS) to not
only restore faded colors but also modify the original color palette as needed.

Professional tools such as iCorrect EditLab — a plugin for Adobe Photoshop and other leading
graphic editors — offer fully automated color correction (SmartAgro, 2025). The software analyzes
the entire image, identifies predefined color classes (e.g., sky blue, foliage green, human skin
tones), and aligns corrections with the host application’s color management settings.

iCorrect EditLab operates in four sequential stages:

1. Neutral tone balancing: Identifies mid-gray regions to eliminate color casts;

2. White/black point detection: Sets dynamic range endpoints;

3. Saturation, contrast, and brightness adjustment;

4. Natural color restoration: Recalibrates individual hues to reflect real-world appearance.

4. Data Fusion

A critical challenge lies in processing and fusing data collected by a swarm of UAVs. Different
drones may capture varying measurements or images of the same field segment, necessitating
reconciliation and conflict resolution.

First, high-accuracy monitoring requires integrating heterogeneous data sources: RGB
imagery, multispectral data, LiDAR point clouds, and thermal imaging. Such data fusion
significantly enhances weed detection accuracy. Studies confirm that combining spectral, textural,
and thermal features yields superior classification performance compared to single-modality
approaches (FourWeekMBA, 2025; Monteiro, Santos, 2022).

Second, even homogeneous data (e.g., visible-spectrum photographs from multiple drones)
exhibit overlapping regions that must be seamlessly stitched. Generating consistent orthomosaics
and vegetation maps from partially overlapping images is essential to avoid gaps or duplicate
counting of the same plants.

5. Image Recognition via Artificial Intelligence

Object detection in drone-captured imagery is framed as a classification problem within an
Al system. Solving it requires a pre-assembled image database of regional flora, partitioned into
training and validation sets. A neural network is then trained on this dataset to classify plant
species in new, incoming images.

Since ground-truth labels (correct species identifications) are available for training samples,
this constitutes a supervised learning task. The goal is to assign each detected plant to its correct
taxonomic class. Unrecognized species — those absent from the training set — may be flagged as
“unknown.” Accumulation of numerous such cases would necessitate model retraining with
expanded data.

The machine learning (Malinowski et al., 2025) pipeline for plant classification is illustrated
in (Figure 6).

By aggregating observations from the drone swarm and classifying detected vegetation,
a detailed spatial map of invasive species distribution and density can be constructed. This enables
targeted intervention strategies — ranging from precision herbicide application to localized
mechanical removal — optimizing resource use and ecological impact.
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Fig. 6. Stages of the machine learning process

6. Advantages of Drone Swarm Monitoring

Compared to conventional field inspection methods, agricultural drone swarms offer the
following advantages:

1. Rapid area coverage: Depending on model, a single drone can monitor 2—6 hectares in 10—
20 minutes. Swarm deployment parallelizes this process, drastically reducing total inspection time.

2. Operation in complex terrain: High maneuverability and terrain-following sensors enable
obstacle avoidance and effective monitoring on slopes, wetlands, and other inaccessible areas
where tractors or personnel cannot operate.

3. Geospatial precision: GPS-enabled data ensures accurate mapping and repeatable
monitoring.

4. All-weather and day/night operability: Equipped with appropriate sensors (e.g., thermal,
NIR), drones function independently of lighting or meteorological conditions.

5. Cost efficiency: UAVs significantly reduce expenditures on ground machinery, fuel, and
labor.

6. Multifunctionality: Modern drones support advanced features such as waypoint marking,
mission pause/resume, multi-payload coordination, and centralized task management.

Agronomists traditionally face significant time and labor demands in routine field
inspections. The integration of NDVI (Normalized Difference Vegetation Index) maps enables real-
time vegetation monitoring, highlighting priority zones for ground verification.

NDVI quantifies vegetation presence and health by analyzing reflected light in visible and
near-infrared (NIR) bands (Li, 2009). Chlorophyll-rich, healthy plants strongly absorb red light
(used in photosynthesis) and reflect NIR due to intact cellular structure. Stressed or sparse
vegetation exhibits the opposite pattern. Thus, NDVI serves as a proxy for crop vigor.

However, NDVI indicates that a problem exists — not why. Season-long NDVI trend analysis
is essential for accurate diagnosis.

NDVI data is collected via satellites or UAVs equipped with NIR cameras, operating from
orbital altitudes down to ~700 m. This enables high-resolution, actionable field maps.

The data acquisition workflow includes:

1. Equipment calibration for specific crops and conditions;

2. Placement of ground control points;

3. Aerial image capture;

4. Georeferencing of all field segments.

Post-processing yields detailed vegetation health maps, empowering agronomists to
prioritize interventions and forecast yields.

Sentinel-2 satellite imagery provides NDVI at 10 m/pixel resolution, enabling fine-scale
analysis — superior to other optical indices limited to 20 m/pixel. Nevertheless, NDVI has

7




Biogeosystem Technique. 2025. 12(2)

limitations: its sensitivity declines at high canopy densities, and persistent cloud cover can degrade
data quality, necessitating complementary radar or UAV-based sensing.

Moreover, NDVI performs poorly in fields with low vegetation cover or during early growth
stages. In such cases, the MSAVI (Modified Soil-Adjusted Vegetation Index) offers a robust
alternative. MSAVI accounts for soil background effects (color, moisture), making it particularly
effective during early season monitoring when soil is still visible between sparse seedlings.

6. Conclusion

The deployment of agricultural drone swarms for monitoring crop fields substantially
enhances agronomic efficiency. By automating visual inspection, enabling precise weed detection,
and leveraging Al-driven analytics, this approach significantly boosts labor productivity in
agriculture while supporting sustainable, data-driven decision-making.
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Abstract

The article is devoted to the consideration of topical issues of organizing continuous
monitoring of the pipeline system for pumping extracted natural gas and oil in hard-to-reach places
based on the use of a drone port and a swarm of drones. A large amount of natural resources is
extracted in the coastal shelf of the northern seas, where the water surface is covered with ice most of
the time, and monitoring of the pipeline system by means of the auxiliary fleet is possible only during
a short period of navigation, therefore automation of the monitoring process will allow for year-
round monitoring and timely identification of emerging problems for their prompt elimination.

Using a drone swarm with a droneport base station makes it possible to increase the
efficiency of obtaining information by obtaining it more quickly from several alternative sources
and then merging them. When information is received from the drone, the information is cleared of
noise and checked for consistency to ensure a higher level of data reliability, which improves the
efficiency of system maintenance. Data is cleared from noise by the drone port, while merging data
from coherent sources and building a visual model of the pipeline system status is performed by a
stationary computer after data is transmitted from the drone port via fiber-optic communication
channels. The visual model, combined with parametric data obtained from sensors installed inside
the pipeline, allows artificial intelligence systems to predict potential emergency conditions and
plan routine repairs of the pipeline infrastructure until a real accident occurs with serious
consequences. The introduction of an automated continuous monitoring system will allow the
pipeline to be operated according to its actual technical condition, thereby reducing operating costs
and ensuring the safety of its operation.

Keywords: monitoring, pipeline system, drone port, drone swarm.
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1. Introduction

Energy constitutes one of the foundational sectors of the economy and plays a critical role in
sustaining modern society (Atdaeva et al., 2024). It encompasses not only resource generation
challenges but also issues related to distribution and consumption.

Currently, oil and coal extracted from the Earth's subsurface represent the predominant
share of global energy resources. As is well known, these reserves within the Earth's crust are finite;
consequently, humanity actively seeks equivalent substitutes.

Replacing coal and oil with natural gas substantially reduces harmful atmospheric emissions,
thereby contributing to the preservation of the Earth's ozone layer and improving the operational
efficiency of thermal power plants.

Significant volumes of natural resources are extracted from the continental shelves of northern
seas, raising the acute challenge of transporting these commodities to the mainland. While maritime
shipping is widely employed for this purpose, vessel-based delivery of oil and natural gas represents a
highly costly undertaking — particularly in northern seas, where such operations become infeasible
during winter months due to ice cover. Pipeline transportation presents a viable alternative, offering
greater economic efficiency and reduced operational complexity.

Pipeline operation for oil and gas transportation necessitates continuous condition monitoring
through readings from embedded sensors, supplemented by periodic external inspections.
For submerged pipeline sections, such activities can only be conducted using auxiliary vessels and
exclusively during ice-free periods — a condition that, in northern seas, occurs for only a brief annual
window. Relying on auxiliary fleets for pipeline monitoring constitutes a costly seasonal operation
feasible solely in the absence of ice cover. Given that pipeline failures may occur at any time of year,
the implementation of alternative monitoring methodologies becomes imperative.

2. Materials and methods

Pipeline inspection monitoring represents a comprehensive suite of non-destructive testing
(NDT) and diagnostic procedures designed to identify defects (corrosion, cracks, deformations),
assess residual wall thickness, verify weld integrity, and evaluate insulation quality. These
procedures employ techniques including ultrasonic testing, radiography, liquid penetrant and
magnetic particle inspection, as well as visual examination — often integrated within automated
systems for continuous monitoring and residual service life assessment.

The principal objectives of pipeline monitoring include:

1. Defect detection: Identification of corrosion, erosion, cracks, dents, and pitting.

2. Geometric control: Measurement of wall thickness and deviations from design geometry.

3. Weld assessment: Verification of joint quality.

4. Component diagnostics: Examination of valves, flanges, supports, and hangers.

5. Insulation evaluation: Assessment of anticorrosive coating and thermal insulation
integrity.

3. Discussion and results

The overarching purpose of monitoring is to ensure the safety and reliability of pipeline
infrastructure, prevent accidents and gas leaks, facilitate maintenance planning, and extend the
operational lifespan of pipeline assets. Pipeline failure in aggressive marine environments poses
severe ecological consequences.

For monitoring pipelines in inaccessible locations, automated inspection using unmanned
aerial vehicles (UAVs), commonly termed drones, offers a practical solution. However, a single
drone proves inefficient for rapid assessment of extensive pipeline segments; consequently, drone
swarms coordinated by a specialized hub — the drone port — are typically deployed.

A drone port constitutes an advanced unmanned technology complex designed for automated
drone deployment, recovery, and maintenance to support pipeline section monitoring. The primary
limitation of autonomous drones remains restricted operational duration due to battery capacity
constraints. Even with contemporary lithium-ion batteries, modern quadcopters rarely sustain
flight beyond 30 minutes. Drone ports address this limitation by providing infrastructure for drone
recovery, recharging, and preparation for subsequent inspection missions. This infrastructure
enables the establishment of continuous automated monitoring networks capable of rapid response
to unforeseen operational incidents.
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Such drone ports have already been implemented for monitoring terrestrial pipeline segments
in remote terrain. For instance, the HIVE drone port (Figure 1) can replace a drone's battery in under
three minutes. Additionally, it transmits acquired data to a central server and simultaneously charges
up to four battery pairs. Through the HIVE system, drones maintain near-continuous operational
readiness. In 2022, HIVE underwent field testing at facilities operated by SIBUR Holding.
Previously, Moscow's municipal search and rescue service tested the drone port over water bodies.
Deployment of HIVE commenced in Innopolis, Tatarstan, in 2020 (Zhang et al., 2021).

Fig. 1. HIVE drone port, Russia

Integrated with the drone port, a swarm of observation drones equipped with sensor arrays
performs dual functions: acquiring data from pipeline-embedded sensors and conducting
autonomous surveillance of pipeline infrastructure integrity and ambient environmental
parameters — including air temperature and chemical composition — to detect leaks and support
ecological monitoring. Such drones may be outfitted with high-resolution cameras, thermal
imagers, gas analyzers, and supplementary sensors (Figures 2, 3; Faniadis, Amanatiadis, 2020).

For marine pipeline segment inspection, deployment of a seabed platform connected to onshore
energy and data resources via subsea cable is proposed. This platform would facilitate recharging of
marine monitoring drone swarms and aggregate transmitted data for preprocessing, fusion, and relay
to coastal monitoring stations. Development of such seabed platforms is currently underway.

Fig. 2. DJI Matrice 300 RTK drone with Zenmuse H20T payload and U10 gas analyzer

Underwater drones have gained utility in pipeline monitoring owing to their capacity to
operate within inaccessible and hazardous submerged environments. These vehicles can descend to
considerable depths, withstand saline water exposure, and capture high-fidelity imagery using
integrated cameras — including 4K resolution systems. Control methodologies encompass tethered
teleoperation, radio-frequency guidance, and fully autonomous navigation systems.
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Fig. 3. Aboveground pipeline section

Underwater pipeline inspection vehicles (UPIVs) represent specialized craft equipped with
4K cameras, LED illumination systems, and sensor arrays capable of inspecting submerged
infrastructure at depths ranging from 200 to 5,000 meters, thereby eliminating the need for
hazardous diver operations. Prominent models such as the Chasing M2 Pro Max (Figure 4)
incorporate sonar systems and manipulator arms for leak detection. This drone platform is
engineered for complex subsea operations, inspections, and scientific research — enabling access to
previously unreachable depths and facilitating investigations once deemed impracticable.

Fig. 4. Chasing M2 Pro Max underwater drone

Key advantages of the CHASING M2 PRO MAX include:

1. A 4K UHD camera with high light sensitivity produces detailed, vivid imagery even at
significant depths and under low-light conditions, enabling precise image recognition for problem
classification.

2. Modular architecture permits integration of supplementary equipment — including robotic
manipulators, sonar systems, and specialized sensors — to address mission-specific requirements,
affording exceptional operational flexibility.

3. Operational depth capability extending to 200 meters unlocks new possibilities for subsea
research, permitting inspections and documentation in previously inaccessible locations.

4. Eight high-torque thrusters deliver superior maneuverability and stability in underwater
currents, ensuring precise and reliable vehicle control under challenging hydrodynamic conditions.
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5. Extended mission duration facilitated by swappable battery systems enables prolonged
operations without frequent surfacing for recharging, thereby enhancing operational efficiency.

6. Intuitive mobile application interface with integrated intelligent functions simplifies
operation even during complex mission profiles.

This industrial-grade underwater drone is designed for hydraulic structure inspection, vessel
hull examination, drilling rig maintenance, pipeline and channel surveys, search and rescue
operations, sediment and water sampling, and high-resolution video documentation. A coordinated
system comprising multiple underwater drones and a drone port can rapidly and comprehensively
inspect extended subsea pipeline segments, generating actionable intelligence for maintenance
decision-making.

All data transmitted by the drone swarm accumulates within the drone port's information
repository. Given the multiplicity of drones, redundant measurements of identical parameters for
the same object may be transmitted concurrently. Furthermore, noise interference may corrupt
transmitted signals. Consequently, prior to database storage, data must undergo denoising and
consistency verification through a data fusion procedure integrating information from coherent
sources (Hafeez et al., 2021, Smagin, 2012).

Following this filtering protocol, noise-reduced data — particularly slow trends — are archived
within the monitoring information base. Data fusion redistributes the information flow, generating
maxima and minima that more accurately reflect the monitored phenomenon. Integration of multi-
source information enhances measurement precision and reliability beyond the capabilities of any
single data source.

Sensor-acquired data undergo preliminary processing by the drone port's onboard processor
to prevent heavily corrupted measurements from entering the operational database. Processed data
are then accumulated in real time within the Blender 3D software suite's database to construct
three-dimensional computer graphic models (Smagin, 2012).

Effective noise filtering reduces measurement uncertainty and enhances sensor accuracy.
This process must address two noise categories: persistent noise (additive white Gaussian noise)
with relatively stable amplitude, and random impulse interference induced by external factors.

Upon monitoring completion, all acquired information must be synthesized to generate a
unified visual model representing both external and internal pipeline conditions (Marshal'ko et al.,
2023). For maintenance and repair planning, visualization through graphical and video modeling
provides an effective decision-support tool. Blender 3D software offers a convenient platform for
constructing such models, enabling generation of visual representations of pipeline external and
internal structure based on filtered data.

To prevent accidents and enhance pipeline operational safety and efficiency, autonomous
monitoring systems incorporating artificial intelligence (Al) have been developed and deployed
over recent (Islamov, et al., 2017; Askarov et al., 2018; Askarov et al., 2019; Tagirov et al., 2017;
Igbal et al., 2021; 2022; Erdelj et al., 2017).

Contemporary integrated monitoring systems typically incorporate machine intelligence
software-neural networks — whose predictive accuracy for identifying failure-prone locations
averages 95 %, substantially exceeding conventional defect detection methodologies.

Al-enabled software undergoes training using predefined parameters against databases
containing extensive examples of adverse events and their consequences. This process enables the
system to recognize correlations between input variables and expected outcomes, subsequently
generating predictive models to identify or anticipate potential failures before they escalate into
critical incidents (McDonald, 2019). For instance, the system may accurately detect equipment
wear signatures or damage indicators and recommend appropriate remedial actions.

The Al system receives real-time pipeline condition data from the central data aggregation
hub — the drone port — which collects signals from pipeline monitoring points and observer drone
swarms. Artificial intelligence processes and interprets these inputs to generate assessments of
current network status (Akay, 2022).

4. Conclusion

The monitoring methodology proposed in this article — employing drone ports and drone
swarms for data acquisition, noise reduction, and fusion of coherent data sources — enhances the
efficiency of pipeline maintenance planning and execution.
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Implementation of automated year-round monitoring systems will enable condition-based
pipeline operation, thereby reducing operational expenditures while ensuring operational safety.
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Abstract

Mangrove forests play a vital role in coastal protection and biodiversity maintenance, yet they
are under severe pressure from climate change and human activities. This study evaluates the
effects of light and temperature on the photosynthetic performance of five mangrove species
(Sonneratia alba, Avicennia alba, Excoecaria agallocha, Ceriops zippeliana, and Bruguiera
gymnorrhiza) in the southern coastal region of Vietham, aiming to clarify their adaptability to
climate change. We measured key photosynthetic parameters (4,,,, light saturation point, and
Tope) at different canopy positions and analyzed their relationships with environmental variables.
The results reveal significant differences in productivity and adaptation among species. Avicennia
alba and Ceriops zippeliana exhibited higher photosynthetic capacity, while Excoecaria agallocha
showed a higher light saturation point but lower productivity. The optimal temperature for
photosynthesis ranged from 28-32 °C, with E. agallocha having a lower T,,;. These findings
highlight the physiological diversity and adaptive traits of mangrove species that influence their
distribution and ecological success under changing climates. The study provides scientific evidence
for species selection in mangrove restoration and sustainable management strategies in the context
of climate adaptation.

Keywords: mangrove plants, photosynthesis, climate change, light, temperature.

1. Introduction

Mangrove ecosystems play an exceptionally important role in environmental protection and
the maintenance of biodiversity in coastal regions (Rahmadi et al., 2023), including in the southern
areas of Vietnam (Dang et al., 2022). Mangrove forests not only provide habitats for numerous
aquatic organisms and rare species of flora and fauna but also serve as a crucial natural barrier
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protecting coastlines from erosion, mitigating the impacts of climate change, reducing wave
energy, and preventing soil salinization (Nagelkerken et al., 2008; Rajpar, Zakaria, 2014).
Moreover, these ecosystems offer significant economic and ecological benefits, such as fisheries
resources, medicinal materials, and livelihoods for local communities (Bandaranayake, 1998; Hussain
et al., 2010; Das et al., 2022). Therefore, the conservation and sustainable development of mangrove
ecosystems have become an urgent task for scientists, environmental managers, and policy makers
(Ferreiraetal., 2022).

Photosynthetic capacity plays a central role in the growth and development of mangrove
plants, reflecting not only their ability to capture solar energy but also their adaptability to harsh
environmental conditions such as salinity, oxygen deficiency, and temperature fluctuations (Joshi
et al., 1984; Nandy et al.,, 2007). In the context of intensifying climate change, studies on the
photosynthetic performance of mangroves are crucial for assessing their adaptability and
developing appropriate conservation strategies (Gilman et al.,, 2008; Ellison, 2015). Factors
influencing photosynthesis include atmospheric composition, light intensity, salinity, temperature,
and ecological competition (Sand-Jensen, 1989; Lovelock et al., 2016; Wang et al., 2021). In recent
years, modern analytical technologies-such as automated photosynthesis systems, portable
photosynthetic sensors, and Infrared Gas Analyzers (IRGA)-have enabled researchers to measure
and monitor photosynthetic processes quickly and accurately, thereby identifying key influencing
factors and proposing effective management solutions to enhance ecosystem resilience (Field et al.,
1989; Tamayo et al., 2001; Douthe et al., 2018).

Automated photosynthesis systems, for instance those using Non-Dispersive Infrared (NDIR)
technology to measure CO, and H,O concentrations, allow for precise and continuous monitoring
of leaf photosynthesis and transpiration under controlled conditions (Hodgkinson et al., 2013;
Rolle et al., 2018). Portable photosynthesis sensors-such as chlorophyll fluorescence meters-
provide a rapid and non-invasive method for evaluating photosynthetic performance and detecting
early stress symptoms in plants (Dong et al., 2019; Herritt et al., 2020). Meanwhile, gas
measurement instruments like the Infrared Gas Analyzer (IRGA) remain the standard tools for
assessing leaf gas exchange rates and determining key physiological indicators such as 4,,,,, CO,
compensation point, and dark respiration (Toro et al., 2019; Macedo et al., 2021).

In the southern coastal region of Vietham, mangrove ecosystems are increasingly affected by
climate change, urbanization, industrialization, and excessive resource exploitation (Thanh et al.,
2004; Giang et al., 2024). This region hosts many typical mangrove species such as Avicennia
marina, Rhizophora apiculata, Sonneratia alba, and others that play essential roles in maintaining
coastal ecological balance (Campbell, 2012; Warner et al. 2016; Do et al.,, 2022). However,
physiological characteristics-especially photosynthetic capacity-of these species remain insufficiently
investigated for conservation and sustainable management purposes. In fact, variations in
photosynthetic performance can sensitively reflect negative environmental impacts (Krauss et al.,
2008; Rovai et al., 2013), thereby helping to identify species most suitable for changing conditions or
management interventions to enhance ecosystem resilience (Dasgupta et al., 2011).

Given the ecological importance of mangroves, studying the photosynthetic capacity of
species in the southern coastal areas of Vietnam is essential to provide accurate and up-to-date
physiological data under local environmental conditions. The main objectives of this paper are:
(1) To evaluate the photosynthetic performance of several dominant mangrove species in southern
Vietnam using modern analytical methods; and (2) To analyze environmental factors influencing
their photosynthetic activity. The findings aim to provide a scientific foundation for practical
applications in mangrove management, conservation, and sustainable development. This study not
only supplies reliable physiological data but also enhances understanding of the ecological roles of
mangrove species in coastal ecosystems, thereby supporting evidence-based conservation
strategies and sustainable development initiatives.

2. Materials and methods

2.1. Study Species and Sites

The study was conducted on five mangrove species: Sonneratia alba, Avicennia alba,
Excoecaria agallocha, Ceriops zippeliana, and Bruguiera gymnorrhiza. Representative
individuals of each species were randomly selected from seven distinct study sites to ensure healthy
and consistent growth conditions (Figure 1).
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Fig. 1. Location map of the study sites

2.2. Sample Collection

To ensure representativeness and objectivity, the sampling process was carefully performed
in accordance with standard scientific protocols (Figure 2). The selection of branches for
measurement followed the criteria below:

Maturity: Selected branches carried fully mature leaves with a deep green color and stable
size. Young, senescent, damaged, or diseased leaves were excluded.

Canopy position: To evaluate differences in photosynthetic activity at various canopy heights,
samples were collected from three vertical positions: Upper, middle, and lower canopy. These
positions were defined based on their relative height from the canopy apex and corresponding light
availability.

Branch size: Each branch was cut to a length of 15—25 cm, ensuring a sufficient number of
leaves for accurate measurement.

Sampling time: Collections were conducted in the early morning (8:00-10:00 a.m.), when
photosynthetic activity was high and environmental conditions (temperature and humidity) were
relatively stable.

Sample preservation: After cutting, branches were stored in polyethylene bags containing
distilled water to maintain moisture and minimize dehydration. Samples were transported
immediately to the laboratory and analyzed within two hours of collection.

Fig. 2. Field collection and photosynthesis measurement of mangrove plants at study sites
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Adhering to these criteria ensured that the collected samples were representative of
mangrove populations in the study area and that photosynthetic measurements were accurate and
reliable.

2.3. Photosynthesis Measurement

Photosynthetic parameters were measured using the portable photosynthesis system LI-
6800 (LI-COR Biosciences, Lincoln, Nebraska, USA) (LI-COR, 2023). The following environmental
parameters were maintained within the measurement chamber: Leaf chamber air temperature:
30°C; Relative humidity: 70 %; CO, concentration: 400 pmol mol™*. Each sample measurement
was completed within five minutes, yielding approximately 20 recorded data points per run.

2.4. Data Analysis

Assuming that the intercellular CO, concentration in the mesophyll (Ci) is known from
experimental data, the relationship between photosynthetic rate and light intensity was described using
the biochemical model for C; photosynthesis proposed by Farquhar (Farquhar et al., 1980), commonly
referred to as the non-rectangular hyperbola model: GAgZ — A4(a;Q + Apax) ] + a;QA10, =0

Net photosynthetic rate (4,) was calculated as: 4,, = A; — Ry

Where: g; is the initial quantum yield (mol mol™); A, is the net photosynthetic rate; 4, is the

gross photosynthetic rate; R, is mitochondrial respiration (dark respiration); A, is the maximum
photosynthetic rate, and 6 is the curvature factor of the light response curve, reflecting the degree
of nonlinearity of the electron transport response. The model mainly involves the following
parameters:

Initial quantum vyield depends on C; (umol mol ), can be expressed by the Ball-Farquhar
equation:

a;=a; (C;—T)/(C;+2rI)

Where q;, is the maximum guantum yield of CO, assimilation and I (umol mol™2) is the CO,
compensation point under non-photorespiratory conditions. The value of I' increases with
temperature due to the higher affinity of Rubisco for O, relative to CO,. The relationship between I’
and leaf temperature (T}, in Kelvin) is described as (Farquhar et al., 1989): ' = 1,7 T,

Intercellular CO, concentration (C): C varies with atmospheric CO, concentration (C,);
A, and stomatal conductance (g;). Under well-watered conditions, this relationship can be
expressed using the semi-empirical Ball-Berry model (Ball et al., 1987):

PAEPLE

Where g, is the residual conductance (experimentally determined), RH is relative humidity at
the leaf surface, C; is the CO, concentration at the leaf surface, and « is an empirical coefficient.
Leuning later modified this model by substituting relative humidity (RH) with vapor pressure
deficit (VPD) (Leuning, 1995):

— An
9s = a(C,-—F)(l—VPD/VPD,,) * 9o
At low light (I — 0), 4,, — 0, and assuming g, = 0, we obtain:
VPD

Ci =Cs_ a(cs_r)(l +FDO)

The maximum rate of photosynthesis 4,,,, is primarily limited by Rubisco enzyme activity
and depends on CO, concentration and temperature:

Anax=Vmax (Cs —T)/(C; + C)

Where 1},,,, IS the maximum catalytic capacity of Rubisco per unit leaf area. The Michaelis
constant (C) for CO, and O, in the Rubisco reaction is treated as constant in this study.
The temperature dependence of V,,,, follows an Arrhenius-type relationship: V,ax=Vm2s{1 +
exp[(_al + bTa)/RTa]} -1

Where: V,,,,s is the value at 25°C; a, b is the activation energy; R is the universal gas constant
(8.314 J mol™ K™1), and T, is absolute temperature (K).

3. Results and discussion

3.1. Dependence of Photosynthesis on Light Intensity and Temperature

The measured data on photosynthetic parameters of mangrove species in the southern
coastal areas of Vietnam are presented in Table 1.
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Table 1. Photosynthetic parameters of mangrove species in the southern coastal region of Vietnam

Species Leaf Apmax Saturation Rd (umol T (umol 0 Agpe (Mol Ty (°C)
position (umolm™2  PAR (umol m-2s™1) mol=1) m2s71)
S—l) m_2 s‘l)
c Upper 6.2+0.8 373+13 -1.6+0.2 15+3 0.023 13.2+04 31.7+0.3
'g canopy
s _g Middle 49+0.7 35811 -1.1+0.2 17+£3 0.022 13.0+0.3 31.7+£0.2
< T canopy
o Lower 3.8x0.6 346 £ 12 -0.9+x0.2 16+3 0.023 10.1+0.3 30.5+0.2
" canopy
o Upper 10.2+0.5 565 + 17 -0.9+0.2 12+3 0.016 85+05 29.3+0.3
= canopy
< g Middle 85+04 562 + 13 -0.9+0.2 11+3 0.016 11.1+0.3 31.1+0.2
S'® canopy
3: Lower 7705 558 £ 9 -1.0+x0.2 12+3 0.016 9.2+0.3 28.7+0.2
canopy
Upper 34+03 1031+ 11 -0.7+£0.2 34+3 0.32 79+04 265+04
O canopy
'g S Middle 41+0.3 1029 + 18 -0.7+£0.2 31+5 0.21 75+04 30.1+0.3
o 0 canopy
§ r=u Lower 4.0+£0.3 1003 = 28 -0.6+x0.2 327 0.25 7404 247+0.2
|.>u< g canopy
Upper 9.6+04 531x21 -0.7+£0.2 24+5 0.02 143+1.0 31404
g canopy
o Middle 10.1+0.3 559 + 28 -0.9+0.3 187 0.018 11.6 £ 0.7 29.8+x0.3
© canopy
2 Lower 6.5+0.3 527 +18 -1.7+0.2 22+4 0.021 10.3+0.5 30.7+£0.2
‘N canopy
g
2
o
O
© © Upper 82+x04 621 +13 -1.1+0.2 21+3 0.02 6.7+0.3 28.8+0.3
= canopy
55 Middle 76+0.3 613+ 15 -0.8+0.2 21+3 0.02 6.3+0.2 28.0+0.2
g’ c canopy
& ; Lower 75+0.3 618 +20 -1.6+0.2 21+3 0.023 8.4+0.2 28.2+0.2
o canopy

Analysis of the photosynthetic parameters of the five mangrove species (Sonneratia alba,
Avicennia alba, Excoecaria agallocha, Ceriops zippeliana, and Bruguiera gymnorrhiza) revealed
considerable variation in photosynthetic capacity, light saturation point, and optimal temperature
among species and leaf positions (Table 1). This reflects physiological and adaptive differences of
each species to distinct environmental conditions.

169

Fig. 3. Relationship between photosynthesis, light intensity, and temperature for Sonneratia alba.
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The maximum photosynthetic rate (4,,4,), @ key indicator of photosynthetic capacity, ranged
from 3.4 £ 0.3 umol m™2 s™1 (Excoecaria agallocha) to 10.2 £ 0.5 umol m~2 s™1 (Avicennia alba).
This indicates that Avicennia alba and Ceriops zippeliana tend to achieve higher photosynthetic
performance than Sonneratia alba, Bruguiera gymnorrhiza, and especially Excoecaria agallocha.
Variations in 4,,,, values are often related to morphological and physiological traits such as leaf
structure, chlorophyll content, and water-use efficiency.

400 200 1200 1600 000 A
PAR {umol photon m- 571

-2

Fig. 4. Relationship between photosynthesis, light intensity, and temperature for Avicennia alba

The light saturation point, representing the light intensity required to achieve maximum
photosynthesis, also varied among species. Excoecaria agallocha had the highest light saturation
point (1003 + 28 to 1031 + 11 umol m~2 s71), while the remaining species ranged between 346 + 12
and 621 + 13 umol m™2 s71, This suggests that E. agallocha requires stronger light to reach optimal
photosynthesis, whereas other species are better adapted to shaded or lower-light conditions.

— ON y= —022x" +12.59x - 171.3.R =0,
-== GT
o ——- 0.14x* +821x~112.3,R

400 800 1200 1600 2000
ok

-2

Fig. 5. Relationship between photosynthesis, light intensity, and temperature
for Excoecaria agallocha

Tope Showed less variation among species compared to A,,, or light saturation points. Most
species exhibited T,,; values between 28°C and 32°C, consistent with tropical environmental
conditions. Excoecaria agallocha showed slightly lower T,,; values (24.7 + 0.2 to 30.1 + 0.3°C),
suggesting greater tolerance to cooler conditions.

Differences in photosynthetic capacity were also observed among canopy positions.
Generally, A,,,, decreased from the upper canopy to the lower canopy, corresponding to light
availability. However, the extent of this reduction varied among species, reflecting differing
adaptation strategies.
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Fig. 7. Light and temperature dependence of photosynthesis in Bruguiera gymnorrhiza

According to Table 2, Sonneratia alba showed the greatest decrease in A,,,, (38.7 %),
indicating significantly lower photosynthetic productivity in lower-canopy leaves. Bruguiera
gymnorrhiza showed the smallest reduction (8.5 %), maintaining relatively high photosynthetic
performance even under shade. Interestingly, Excoecaria agallocha showed a negative A,
reduction (-17.6 %), likely due to natural variability or increased exposure of lower leaves to
diffused light.

Table 2. Variation of A,,,, by canopy position

Species Apax (Upper canopy) Apax (Lower % Decrease
canopy)
Sonneratia alba 6.2+0.8 3.8+x0.6 38.7%
Avicennia alba 10.2+0.5 7.7%+0.5 24.5%
Excoecaria agallocha 3.4+03 40+0.3 -17.6%
Ceriops zippeliana 9.6+04 6.5+0.3 32.3%
Bruguiera gymnorrhiza 82+04 75+0.3 8.5%

3.2. Comparison of Productivity and Adaptability among Mangrove Species

Photosynthetic Productivity

The maximum photosynthetic rate reflects the carbon fixation potential of plants. Results
showed that Avicennia alba and Ceriops zippeliana achieved the highest A,,,, values (10.2 + 0.5
and 9.6 = 0.4 umol m™ s, respectively, at upper canopy leaves), suggesting higher light-use
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efficiency and growth potential under favorable conditions. Conversely, Excoecaria agallocha
exhibited the lowest 4,,,,, (3.4 £ 0.3 umol m™2 s71), indicating energy limitations under low light or
strong competition.

Anmax 9enerally decreased from upper to lower canopy across most species, consistent with
canopy light distribution. For instance, Sonneratia alba showed a pronounced reduction from 6.2
+ 0.8 to 3.8 = 0.6 umol m™2 s™1, suggesting light limitation and reduced photosynthetic
performance in shaded leaves.

Adaptation to Light Conditions

The light saturation point reflects a species’ adaptation to light environments. Excoecaria
agallocha exhibited the highest light saturation (>1000 umol m™2 s71), indicating a requirement
for high light intensity and confirming its pioneer role in open, disturbed, or newly accreted areas.
In contrast, Sonneratia alba and Bruguiera gymnorrhiza had lower light saturation points,
reflecting better adaptation to shaded or low-light environments such as beneath dense canopies.
The curvature factor (0) further supported these findings: light-demanding species showed lower 6
values, indicating higher light-use efficiency.

Adaptation to Temperature

Table 3. Variation of T,,,; by canopy position

Species Upper Middle Lower Mean T o,
canopy canopy canopy
Sonneratia alba 31.7+0.3 31.7+0.2 30.5+0.2 31.3+0.2
Avicennia alba 29.3+0.3 31.1+0.2 28.7+0.2 29.7+1.0
Excoecaria agallocha 26.5+04 30.1+0.3 24.7+0.2 27.1+£23
Ceriops zippeliana 31.4+04 29.8+0.3 30.7+0.2 30.6 £0.6
Bruguiera gymnorrhiza 28.8+0.3 28.0+0.2 28.2+0.2 28.3+0.4

In general, most species exhibited T,,, values within the range of 28-32°C, suitable for
tropical environmental conditions. T,,. varied slightly among species (Table 3). Sonneratia
alba showed the highest mean T,,, (31.3 = 0.2°C), indicating superior tolerance to higher
temperatures. Excoecaria agallocha exhibited the lowest mean T,,; (27.1 = 2.3°C), suggesting
better adaptation to cooler environments. Other species had intermediate T,,. values (28.3—
30.6°C), consistent with tropical climatic conditions.

3.3. Adaptive Potential under Climate Change Scenarios

Based on the analysis of photosynthetic parameters, the adaptive responses of the five
mangrove species were evaluated under climate change scenarios.

Sonneratia alba demonstrated strong adaptability to temperature increases under both
RCP4.5 and RCP8.5 scenarios. Rising temperatures, if not accompanied by water scarcity, could
enhance carbon assimilation and population growth in this species. Avicennia alba adapted well
under RCP4.5 but showed reduced tolerance under RCP8.5, as extreme heat may exceed the
optimal range for mid-canopy leaves, indicating vulnerability to heat stress.

Excoecaria agallocha was identified as sensitive to high solar radiation and unsuitable for
areas with low rainfall and high annual sunshine. This species may struggle under hotter, drier
climates. In contrast, Ceriops zippeliana exhibited strong light preference and adaptability to both
RCP4.5 and RCP8.5 scenarios, showing flexible photosynthetic responses to increasing
temperatures. Bruguiera gymnorrhiza also demonstrated resilience to thermal stress under both
scenarios, with upper canopy leaves displaying superior resistance to heat and dehydration
compared to lower leaves.

These results collectively highlight interspecific differences in photosynthetic capacity and
resilience, offering critical insights for selecting and managing mangrove species in climate
adaptation and restoration strategies.

3.4. Discussion
In the context of climate change and its increasing impacts on mangrove ecosystems,
understanding the photosynthetic characteristics of individual species is of great importance-not
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only to better comprehend their adaptive capacities but also to support smart and effective
management decisions (Cheeseman et al., 1991; Cheeseman et al., 1997). The results of this study
reveal notable differences in photosynthetic productivity and adaptability among five mangrove
species. Avicennia alba and Ceriops zippeliana exhibited higher A,,,, values than the other
species, whereas Excoecaria agallocha showed the highest light saturation point but the lowest
Amax- Topr among species ranged between 28-32°C, although Excoecaria agallocha tended to have
lower T, values.

Differences in A,,,, may reflect variations in survival strategies and distribution patterns
among mangrove species. Avicennia alba and Ceriops zippeliana, with higher 4,,,, values, may be
better adapted to nutrient-rich environments or possess a greater ability to compete for light.
Conversely, Excoecaria agallocha, with its lower A,,,,, may be better suited to nutrient-poor or
shaded environments (Lopez-Hoffman et al., 2006; Wang et al., 2021). Such differences in A, ;.
are often associated with variations in leaf morphology, chlorophyll content, water-use efficiency,
and stomatal regulation capacity (Chang et al., 2022). The high light saturation point of Excoecaria
agallocha aligns with its ecological role as a pioneer species typically found in open, high-light
environments. In contrast, species with lower light saturation points-such as Sonneratia alba and
Bruguiera gymnorrhiza — are better adapted to shaded conditions, for example, under dense
canopy cover (Farnsworth et al., 1996; Ball, 2002; Krauss et al., 2003).

Differences in T,,, among species likely reflect adaptations to varying temperature regimes
within the study region. The lower T,,, observed in Excoecaria agallocha suggests that this species
may have originated from cooler habitats or possesses higher tolerance to lower temperatures (Field,
1995; Quisthoudt et al., 2012). Our results are consistent with previous studies on the photosynthetic
responses of mangrove species (Moorthy et al., 1999; Das et al., 2002). However, some variations
may result from differences in measurement methods, environmental conditions, or genetic
characteristics among populations (Gutiérrez-Rodriguez et al., 2000; Reynolds et al., 2000).

Nevertheless, this study has several limitations that should be considered. First,
measurements were conducted at a single time point (September 2023); thus, seasonal or
environmental variations in photosynthetic performance could not be assessed (Suwa et al., 2008;
Lele et al., 2021). Second, measurements were made only on mature leaves, so potential differences
in photosynthetic response among developmental stages could not be evaluated (Okimoto et al.,
2008). Furthermore, only five mangrove species were examined, preventing broad generalizations
across all mangrove taxa in the region. Future studies should aim to measure photosynthetic
parameters seasonally, across developmental stages, and under diverse environmental conditions
to better understand temporal and physiological variations (Kaipiainen, 2009). Expanding
research to include additional mangrove species will also provide a more comprehensive
understanding of species diversity and functional adaptation in mangrove ecosystems.

The findings of this study have significant implications for understanding mangrove
ecophysiology and for practical applications in mangrove restoration and management. Species
selection for reforestation or rehabilitation projects can be guided by photosynthetic parameters
such as A4y, light saturation point, and T,,,.. Moreover, understanding how environmental factors
affect mangrove photosynthesis can inform effective management strategies for protecting and
restoring these critical ecosystems.

4. Conclusion

This study elucidated the differences in photosynthetic capacity among five key mangrove
species in the southern coastal region of Vietnam, providing valuable insights into their ecology
and adaptive mechanisms. The results demonstrate that Avicennia alba and Ceriops
zippeliana possess higher photosynthetic productivity, while Excoecaria agallocha shows
adaptation to high light intensity and lower temperature conditions. These findings highlight not
only the physiological diversity among mangrove species but also offer essential scientific
foundations for conservation and restoration efforts under changing climatic conditions. Selecting
species that best match local environmental parameters is a crucial factor in ensuring the success of
restoration projects.

For a more comprehensive understanding, future research should focus on assessing mangrove
photosynthetic responses under varying environmental conditions (e.g., seasonal changes, salinity
gradients, and pollution levels) and on examining genetic factors that may influence their adaptive
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capacities. This study aims to contribute to raising awareness of the importance of mangrove
conservation and to encourage concrete actions to protect these invaluable ecosystems for future
generations.
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Abstract

The article examines the potential of forecasting methods to evaluate changes in the
concentration of lithophilic chemical elements in soil samples, with a focus on scenarios in which
limited monitoring data are available. The analysis is based on averaged chemical element
concentrations, which enables assessment of the overall direction of change without reference to
individual sampling points. This approach facilitates comparisons among elements, thereby
allowing the identification of discrepancies in their temporal dynamics. The forecasts indicate that
the concentrations of certain elements (Rb, Zr) remain unchanged, whereas those of others (Ba, Sr)
show directional change or increased variability. It is imperative to account for this when
interpreting pollution dynamics in the absence of detailed spatial data.

Keywords: heavy metals, artificial intelligence, machine learning, linear regression,
exponential smoothing.

1. Introduction

The existing geochemical classification of chemical elements is based on their
physicochemical properties, which are crucial to the formation of various geochemical systems
(Perelman, 1989). However, the modern cycle of substances, exacerbated by anthropogenic
environmental interventions, has become an irreversible geochemical factor in chemical migration.
It is primarily due to the geochemical composition of the earth's surface. Actually, heavy metals are
significant soil pollutants because they tend to accumulate and migrate through the soil over long
periods (Gantulga et al., 2023; Sukiasyan et al., 2022). However, analyzing certain elements is
difficult because they occur at trace and ultra-trace concentrations on the soil surface. Nonetheless,
they form the foundation for the life and functioning of all biogeocenosis, from soils to living
organisms. Lithophile elements stand out among these, mainly found in poorly soluble forms with
low mobility and minimal participation in quick geochemical reactions (Isaev et al., 2025). Their
behavior in soils mainly depends on the mineral makeup of parent rocks and overall geochemical
conditions, rather than on local pollution sources. (Du Laing et al., 2009; Chougong et al., 2021).
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Consequently, it is essential to develop practical methods for controlling and monitoring
environmental pollution, since data gaps often result from technical challenges in selecting and
implementing geochemical techniques for these investigations (Sokolov et al., 2016).

In this context, employing artificial intelligence (Al) and machine learning (ML) models is
crucial for real-time spatiotemporal environmental monitoring. This method addresses
environmental challenges by handling diverse and often incomplete ecological data and integrating
information on air, water, and soil quality assessments (Jordan et al., 2015; Xu et al., 2025).
ML provides a more versatile and insightful analytical platform than traditional statistical
methods, particularly for analyzing complex nonlinear relationships in geochemical systems
(Shamsoddini, Esmaeil, 2023). ML also enables correction of anomalous values, identification of
spatial trends, extraction of informative features, and improvement in the reliability of models for
predicting the concentrations of chemical elements in natural environments (Ma et al., 2024;
Alotaibi, Nassif, 2024).

One significant benefit of ML is its ability to automatically identify subtle data patterns and
make predictions without requiring predefined functional dependencies, thereby enhancing the
robustness of environmental modelling amid high uncertainty (Hao et al., 2023). Integrating
ML methods into environmental research is especially crucial for evaluating soil pollution, as these
datasets exhibit complex spatiotemporal patterns and are influenced by various natural and
human-made factors (Gunal et al., 2023).

The article aims to address the practical challenge of enhancing environmental monitoring
through Al and ML forecasting, particularly for assessing changes in soil chemical element
concentrations when monitoring data are scarce.

2. Materials and methods

Soil samples were collected to a depth of 20 cm using the “envelope” method and non-
metallic tools under dry-weather conditions. Target lithophile elements, including Zr, Sr, Rb, and
Ba, were selected for analysis of soil from various regions in Armenia. Element concentrations were
measured in the laboratory following standardized procedures (Sukiasyan, Kirakosyan, 2024).
The sampling coordinates are listed in Table 1.

Table 1. Geographic coordinates of generalized sampling sites

Sampling sites North West

H1 40°33'04.9" 44°44'42.1"

Hrazdan region H2 40°33'10.4" 44°44'46.5"
H3 40°33'29.2" 44°44'43.2"

Gavar region Gl 40°20'29.0" 45°12'22.6"
G2 40°20'23.2" 45°12'16.8"

Martuni region M1 40°13'49.8" 45°12'17.1"
M2 40°13'48.5" 45°12'06.0"

The forecast model was built using data collected during a three-year monitoring period
(2021—-2023). These empirical data provided the foundation for modelling temporary fluctuations
in concentrations. To ensure that forecasts of metal concentrations were physically realistic,
a logarithmic transformation was applied before modelling. Specifically, the natural logarithm of
the concentration values was computed as:

zy = log(yt) (€]

where y, is the observed concentration at year t; z, is the transformed value.

Two methods were used to model the temporal dynamics of Zr, Sr, Rb, and Ba
concentrations: linear regression (LR) and exponential smoothing with a decaying trend (ETS)
(Hyndman, Koehler, 2002; Koyande, 2024). LR was used to assess the trend direction (e.t, model
the metal concentration as a linear function of time), and ETS was used to determine whether the
trend was downward or stabilizing, extended to 2026:

Zerk = Bo * B1Xerk (2)

where: 7, is the future values of concentration in log-space at year x.,x; Bo is the intercept;
B, is the slope (rate of change over time).
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The final predicted concentration can be calculated by:
Verk = €Xp(Ze4x)
ETS is a state-space model. An additive error with an additive damped trend configuration is
commonly applied for non-seasonal, short-term environmental data.
Zepi =lg—1 + Pbg + &
ly =1 + ®b_; + ag;
by = ®b_4 + Be;
where Z, ) is the future values of concentration in log-space at year x.,; ¥; is the level; b is
the damped trend; ¢ is the damping parameter (0 < ¢ < 1); a, B are smoothing parameters; ¢, is
the forecast error.
The final predicted concentration can be calculated by:

Vesk = exp(Zerk)

3. Results and discussion

Lithophile elements are the main sources of rock-forming minerals in Earth's crust (Lozovik
et al., 2020). They exist as stable ions that form compounds with silicon and oxygen, such as
silicates and oxides. These ions influence hydrolysis, oxidation-reduction, complexation, and
precipitation in water, aiding the transfer of ions from water to soil (Alekin, Lyakhin, 1984). Soil
samples collected annually from 2021 to 2023 were analyzed for Zr, Sr, Rb, and Ba. Table 2 shows
the concentrations of these chemical elements in the grouped soil samples by year of collection.

©)

4
()
(6)

(7)

Table 2. Concentration of the study lithophile element in soil sample

Sampling Zr Sr Rb Ba
sites 2021 2022 | 2023 | 2021 | 2022 | 2023 | 2021 | 2022 | 2023 | 2021 | 2022 | 2023
H1 192.1 211.3 | 1415 | 400.1 | 485.2 | 383.7 | 70.6 | 73.1 | 514 | 395.2 | 549.1 | 436.3
H2 335.3 228.2 | 211.0 | 468.2 | 396.5 | 359.8 | 77.7 | 63.9 | 53.6 | 477.4 | 447.2 | 570.7
H3 212.9 286.5 | 212.0 | 498.1 | 472.8 | 347.0 | 71.2 | 71.2 | 48.2 | 476.1 | 465.8 | 495.1
Gl 186.7 184.3 | 147.0 | 527.4 | 565.0 | 515.3 | 60.8 | 57.7 | 41.6 | 436.3 | 537.8 | 578.9
G2 177.9 179.5 | 148.5 | 540.0 | 604.3 | 557.3 | 56.9 | 53.8 | 38.2 | 438.0 | 471.7 | 581.7
M1 173.3 179.4 | 132.1 | 381.1 | 408.5 | 341.7 | 73.4 | 68.8 | 50.2 | 284.3 | 393.4 | 382.3
M2 191.4 175.1 | 120.7 | 386.1 | 381.1 | 377.8 | 72.4 | 66.4 | 52.3 | 408.9 | 404.9 | 367.1

Then, to ensure reproducibility of the forecasting process, the numerical parameters of both
predictive models (LR and ETS) are presented in Table 3.

Table 3. Comparison of parameters of both models: linear regression (LR) and exponential
smoothing with a decaying trend (ETS)

i LR model ETS model
Chemical
element iti iti
Intercept, 3, | Slope, B, Level Trend Damping I&:S;' %_nrgrl%l
Zr 286.41 -0.14 5.39 -0.14 0.995 209.94 -2.99
Sr 112.04 -0.05 6.16 -0.05 0.995 457.29 17.53
Rb 434.65 -0.21 4.29 -0.21 0.995 69.00 -3.00
Ba -152.64 0.08 6.05 0.11 0.800 416.60 60.78

Figure 1 shows projected changes in soil concentrations of Zr, Sr, Rb, and Ba through 2026.
Specifically, it presents a 95 % confidence interval for LR and a £10 % uncertainty range for ETS.

Regarding Zr, the data up to 2023 show slight year-to-year variation, as seen in the
simulation results. Subsequently, the LR model suggests a nearly flat trend through 2026, whereas
the ETS model offers a smooth continuation of observed patterns with minor fluctuations.
Throughout the forecast, the confidence intervals for both models remain narrow and only slightly
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widen over time. Finally, the comparable widths of these intervals indicate low uncertainty and
strong agreement between the models for Zr, consistent with its chemical inertia and incorporation
into soil silicate phases.
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Fig. 1. Forecast of Zr, Sr, Rb, and Ba concentrations in soils through 2026 using linear regression
(LR) and exponential smoothing with a decaying trend (ETS)

For Sr, LR suggests a weak directional trend that is consistently projected through 2026,
indicating a modest expected change if current drivers persist. In contrast, ETS provides a
smoother trajectory, signaling stability by actively preserving the present concentration level.
The confidence intervals for both models gradually widen over the forecast period, a typical result
of extrapolation, though they stay within observed value ranges. LR's slightly wider intervals
compared to ETS's suggest this method is more responsive to year-to-year concentration
variability, making it suitable for identifying shifts tied to short-term changes. This pattern reflects
Sr's chemical behavior, such as its susceptibility to isomorphic calcium substitution and
involvement in slow ion-exchange processes, meaning model outputs track the potential influence
of these known mechanisms.

For Rb, the LR trend is very weak, with forecast values staying near the series' mean,
suggesting no notable directional change under current conditions. The ETS model further flattens
these dynamics, reinforcing an interpretation of long-term stability. Consistently narrow
confidence intervals for both LR and ETS indicate little forecast uncertainty or expected change,
which aligns with Rb's well-established fixation in potassium-rich soil minerals and amplifies
confidence in status quo predictions.

For Ba, the predicted results also show high stability. LR produces a smooth, steady forecast.
ETS smooths the dynamics, avoiding extremes. The confidence intervals for Ba widen only slightly
and are similar across models. This shows moderate forecast uncertainty. The pattern reflects Ba's
stable geochemical behavior, linked to carbonate and exchange forms. These results support using
these predictions without accounting for regional differences. Building on this consistency, it is
useful to examine how model behavior compares for short-term soil sample changes.
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Short-term changes in soil sample concentrations were estimated using aggregated, non-
spatial data. For Ba, both the LR and ETS models showed similar forecast directions and consistent
trends. However, LR responded more to small, interannual fluctuations and produced more
variable forecasts. ETS projections were more conservative, showing lower uncertainty over longer
horizons. For lithophile elements, smoothing models like ETS are best, while LR supplements by
gauging the overall trend.

4. Conclusion

Harnessing Al- and ML-based forecasting has unlocked new insights into spatiotemporal
changes in lithophile element concentrations. When time-series data are limited, rely on ETS for a
comprehensive assessment. For elements tightly bound to soil minerals and exhibiting low
mobility, aggregated forecasting sharpens interpretation by highlighting stable background trends.
Crucially, increasing model complexity or spatial detail yields only a slight improvement in forecast
quality here. Ultimately, as our study affirms, align your model choice with both the data's
statistical properties and the chemical characteristics of the elements.
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