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Abstract

The article is devoted to the issues of organization of monitoring and control of invasive
plants growing in hard-to-reach places using a swarm of drones and a drone port. Sosnovsky's
hogweed has spread widely in Russia and is actively seizing new areas, creating infestation steps
that are difficult to control using traditional methods. Monitoring and elimination of such foci by
traditional manual methods is time-consuming, ineffective and unsafe.

A new technology that provides rapid monitoring of large areas and targeted chemical
intervention only where necessary, reducing the risk of damage from invasions and the use of
pesticides, is a technology based on the use of a drone swarm in conjunction with a drone port.
It allows you to quickly explore large areas and get detailed images of growing vegetation from
different angles. The resulting images can be recognized by means of artificial intelligence,
analyzing the density of growth of invasive plants and their proximity to other crops.

The data collected by agrodrones can be conditionally divided into digital and graphical.
When receiving digital data from a swarm of drones, the information on the drone port is cleaned
of noise and checked for consistency to ensure the reliability of the data, which improves the
efficiency of system maintenance. For graphic data, first of all, color correction is used, restoring
color details and increasing clarity, while restoring the natural image distorted at the time of
digitization and subsequent processing.

The key issue is the merging of the data collected by the agrodron swarm. Different specimens
of agrodrons can receive different parameters and different images of the same habitat of invasive
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plants, and these data need to be linked to each other, eliminating contradictions. After building a
consistent model of the area, the growing plants are recognized using artificial intelligence.

The described technology allows automated analysis of the vegetation condition and provides
conclusions and recommendations based on artificial intelligence.

Keywords: invasive plants, swarm of agricultural drones, data cleaning, data fusion.

1. Problem Statement of Monitoring

Weed infestation presents a pressing issue in agriculture, significantly reducing crop yields
and, in certain cases, posing serious threats to ecosystems, agricultural productivity, and human
health. In Russia, the spread of Heracleum sosnowskyi (Sosnowsky’s hogweed) is particularly
acute. This plant forms dense thickets up to 3 meters tall and secretes a toxic sap that causes severe
phytophotodermatitis in humans. Ambrosia artemisiifolia (common ragweed) has become
widespread in southern regions, triggering potent allergic reactions — its pollen being a notorious
allergen — and diminishing field productivity (Mullerova, 2024) Solidago canadensis (Canada
goldenrod) and related species aggressively displace native flora, establishing monocultures that
degrade pollinator habitats and disrupt ecosystem services These and other invasive weeds
continuously colonize new territories, creating invasion foci that are difficult to control using
conventional methods.

Traditional manual approaches to monitoring and eradicating such infestations are labor-
intensive, time-consuming, inefficient, and potentially hazardous. For example, ground-based
surveys of hogweed-infested areas are impeded by the risk of chemical burns while locating
ragweed across expansive fields demands substantial human resources. Moreover, blanket
pesticide application over entire fields results in excessive chemical loading on the environment.
Thus, novel technologies are required that enable rapid, large-scale monitoring and facilitate
precise, localized interventions only where necessary — thereby mitigating ecological damage and
minimizing chemical usage.

The advancement of unmanned aerial vehicles (UAVs), or agricultural drones, offers
transformative potential in addressing this challenge. UAVs allow rapid coverage of extensive areas
and provide high-resolution visual data through aerial imagery (Figure 1). They enable timely and
comprehensive field inspections, facilitate the identification of weed clusters, reduce inspection
time, and permit detailed, multi-angle examination of detected infestations (Monteiro, Santos,
2022). Artificial intelligence (Al) algorithms can then be applied to classify plant species visible in
the captured images (Dutech, Scherrer, 2013).

Although the deployment of agricultural UAVs remains somewhat limited in Russia at
present, the topic of agro-drones remains highly relevant — not only domestically but globally.
Increasingly, “smart” technological solutions are emerging that reduce operational costs and
optimize agro-industrial complex (AIC) workflows. Drones play a pivotal role in the digital
transformation of the AIC. Consequently, UAV developers continue to introduce increasingly
sophisticated and multifunctional models tailored to diverse agricultural tasks.
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Fig. 1. Application of agricultural drones in farming
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Of particular interest is the use of drone swarms — coordinated groups of UAVs operating in
conjunction with a central droneport. While a single drone is constrained by flight range and
endurance, a swarm can efficiently cover large areas and complete missions far more effectively.
Cooperative control necessitates robust inter-drone communication and avoidance of task
duplication. Modern algorithms enable real-time data exchange and collaborative coverage path
planning, wherein each UAV autonomously computes its flight trajectory while accounting for the
plans of others. Distributed coordination and information sharing maximize area coverage while
minimizing energy consumption. A key challenge lies in the preliminary processing and cleaning of
acquired data, as well as its fusion across multiple UAVs and the resolution of inconsistencies
between overlapping observations.

2. Hardware Configuration for Monitoring

To perform monitoring tasks effectively, a drone must be equipped with the following
instrumentation:

1. A high-resolution camera for capturing detailed imagery;

2. An ultrasonic sensor for obstacle detection and collision avoidance;

3. A Bluetooth module for short-range data transmission;

4. A GPS receiver for geotagging the location of each data capture;

5. An accelerometer for maintaining horizontal stabilization and minimizing deviations;

6. A barometric sensor (barometer) for altitude hold;

7. An autopilot system for autonomous waypoint navigation and return-to-home
functionality.

The drone must incorporate obstacle-avoidance sensors capable of triggering evasive
maneuvers upon detecting obstructions. Its internal control system should enable autonomous
flight along pre-defined routes even in the event of communication loss with the ground control
station.

The drone must be outfitted with a high-resolution camera, as it is required to approach a
designated field segment, descend to a low altitude, and capture multiple high-quality images.
Upon mission completion, the collected data must be transmitted to the droneport, where
specialized software leveraging Al algorithms performs subsequent analysis and interpretation.

3. Data Cleaning

Data acquired by agricultural drones can be broadly categorized into two types: digital
(numerical sensor readings) and graphical (imagery).

All transmitted and received signals inherently contain noise — defined as any undesirable
signal component superimposed on the ideal signal. In digital wireless communication systems,
the ideal signal resembles a trapezoidal pulse, which becomes distorted in the presence of noise
(Figure 2; Li, 2009).
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Fig. 2. Ideal vs. real signal waveforms

Deviations from the ideal can be observed in both time (temporal jitter) and amplitude
(amplitude noise). In radio-frequency systems, signal amplitude corresponds to power; thus, amplitude
deviation (dA) represents amplitude noise, while temporal deviation (dt) constitutes jitter.
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Jitter-unwanted timing instability — manifests as fluctuations in the temporal positioning of
signal transitions relative to their nominal values. It arises from synchronization instability and
channel path variations. Jitter comprises two components: a purely random (stochastic)
component and a quasi-deterministic, typically low-frequency component known as wander
(Smagin, 2012).

The effects of jitter and amplitude noise on system performance are asymmetric. Amplitude
noise acts as a continuous function, exerting a persistent influence on system characteristics.
In contrast, jitter affects the system only during signal edge transitions.

Signal integrity is generally defined as any deviation from the ideal signal waveform. Thus,
it encompasses both amplitude noise and jitter. However, certain integrity issues — such as
undershoot, overshoot, and signal ringing — cannot be fully characterized solely by jitter and noise
metrics (Figure 3).

Positive spike —» Ringing artifact

Megative spike

Fig. 3. Characteristics of signal integrity

The combined impact of jitter and amplitude noise is best evaluated from the perspective of
the receiver in a communication system. The receiver samples the incoming pulse at time t using a
voltage threshold v (Figure 4). In the ideal case, sampling occurs at the center of the input pulse.
If the rising and falling edge times satisfy t<sub>f</sub> < t<sub>s</sub> and the signal voltage
V<sub>1</sub> > v<sub>s</sub>, the system correctly registers a logical “1” (Figure 4a).

In the presence of jitter and noise, signal edges shift along the time axis and voltage levels
fluctuate along the amplitude axis. This may violate the conditions for correct bit detection, leading
to bit errors (e.g., a logical “1” misinterpreted as “0”). Three failure modes may occur during
“1” detection:

1. The rising edge crosses the threshold after the sampling instant (t<sub>f</sub> >
t<sub>s</sub>);

2. The falling edge crosses before the sampling instant (t<sub>f</sub> < t<sub>s</sub>);

3. The signal voltage falls below the threshold (V<sub>1</sub> < v<sub>s</sub>).

For logical “0” detection (Figure 4b), correct sampling requires t<sub>r</sub> <
t<sub>s</sub> < t<sub>f</sub> and V<sub>0</sub> < v<sub>s</sub>. Violations mirror those
for “1,” except that V<sub>0</sub> > v<sub>s</sub> leads to error.

Logical «1s v,

a) )

Fig. 4. Receiver-based sampling of input data

Given that digital systems transmit numerous bits over time, overall performance is
commonly quantified by the Bit Error Rate (BER) — the ratio of erroneous bits (N<sub>err</sub>)
to total transmitted bits (N<sub>tot</sub>). BER serves as a fundamental quality metric for
communication systems. At multi-gigabit-per-second data rates, standards such as Fibre Channel,
Gigabit Ethernet, SONET, and PCI Express typically require BER < 10<sup>-12</sup>, meaning
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no more than one error per trillion bits. Higher BER degrades network efficiency and increases
system latency. BER depends on data rate, jitter, and noise, and — being statistical — is often
analyzed using Poisson statistics.

Jitter and noise originate from numerous physical and systemic sources, broadly classified as
intrinsic and extrinsic. Intrinsic sources stem from the stochastic behavior of electrons and holes in
semiconductor devices and represent fundamental physical limits that cannot be fully eliminated —
though they may be minimized. Extrinsic sources arise from system design and configuration and
are thus potentially correctable.

Intrinsic noise primarily results from thermal and shot noise in electronic and optoelectronic
components, setting baseline constraints on system dynamic range. Noise is typically quantified in
terms of voltage, current, or power — collectively referred to as “amplitude.” When amplitude noise
AA(t) is superimposed on a base signal A<sub>0</sub>(t), the corresponding timing jitter can be
approximated via linear small-signal perturbation theory:

$$

\Delta t \approx \frac{\Delta A(t)}{dA_0/dt}

$$

where dA<sub>0</sub>/dt is the signal slew rate (Figure 5). Thus, for a given amplitude
noise level, timing jitter decreases as the signal edge steepness increases — highlighting the benefit
of minimizing rise/fall times to reduce jitter.
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Fig. 5. Conversion of amplitude noise into timing jitter according to linear perturbation theory

Extrinsic noise and jitter arise from system-level imperfections and are amenable to
mitigation. Common types include periodic modulation (phase, amplitude, or frequency), duty
cycle distortion, inter-symbol interference, crosstalk, electromagnetic interference (EMI), and
reflections due to impedance mismatches.

Digitally acquired sensor data undergoes preliminary filtering on board the drone or at the
droneport processor to prevent heavily corrupted data from entering the operational database.
Cleaned data is then accumulated in real time within a centralized data repository.

Effective noise filtering enhances measurement accuracy (Baklanov, 1998) and sensor
reliability. Two primary noise types must be addressed: (1) stationary (additive white Gaussian
noise) with relatively stable amplitude, and (2) impulsive noise caused by external disturbances.

For stationary noise, the moving average filter is well-suited: it maintains a buffer of recent
measurements and shifts the observation window forward with each new sample. Although this
method involves floating-point calculations that slightly slow processing, the overhead remains
negligible compared to data transmission latency (FourWeekMBA, 2025).

Impulsive noise within individual measurements is best mitigated using a median filter
(Smagin, 2012). Empirical studies show that combining median filtering with moving average
yields robust results.

Of special interest is the filtering of the quasi-deterministic jitter component, which primarily
reflects hardware-specific characteristics. To isolate this component, we propose the “Caterpillar”
method — also known as Singular Spectrum Analysis (SSA). A key advantage of SSA is that it
requires no prior model of the jitter process. SSA decomposes a time series into interpretable
components (trend, periodicities, noise) by embedding the series into a trajectory matrix,
performing singular value decomposition (SVD), and reconstructing selected components. This
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approach outperforms conventional time-series methods in separating structured signal features
from noise.

Following onboard preprocessing, cleaned data is transmitted via communication channels to
the central droneport computer for advanced analysis.

Graphical data — i.e., aerial imagery — also requires cleaning. This includes correcting or
removing corrupted information such as duplicates, missing values, incorrect formats, and outliers.

Color correction is an essential step in digital image processing. Manual white balance
settings on cameras often introduce uncontrolled color inaccuracies. Although modern image
editors provide powerful correction tools, manual intervention is impractical in high-throughput
workflows. Fortunately, automated color correction solutions exist.

Image quality enhancement focuses on restoring natural color fidelity and improving
sharpness — reversing distortions introduced during capture or digitization. Advanced algorithms
automatically identify regions requiring adjustment (e.g., color balance, brightness, contrast) and
apply localized corrections. These systems also address common artifacts such as moiré patterns
and color casts.

Sophisticated color grading leverages blending algorithms and lookup tables (LUTS) to not
only restore faded colors but also modify the original color palette as needed.

Professional tools such as iCorrect EditLab — a plugin for Adobe Photoshop and other leading
graphic editors — offer fully automated color correction (SmartAgro, 2025). The software analyzes
the entire image, identifies predefined color classes (e.g., sky blue, foliage green, human skin
tones), and aligns corrections with the host application’s color management settings.

iCorrect EditLab operates in four sequential stages:

1. Neutral tone balancing: Identifies mid-gray regions to eliminate color casts;

2. White/black point detection: Sets dynamic range endpoints;

3. Saturation, contrast, and brightness adjustment;

4. Natural color restoration: Recalibrates individual hues to reflect real-world appearance.

4. Data Fusion

A critical challenge lies in processing and fusing data collected by a swarm of UAVs. Different
drones may capture varying measurements or images of the same field segment, necessitating
reconciliation and conflict resolution.

First, high-accuracy monitoring requires integrating heterogeneous data sources: RGB
imagery, multispectral data, LiDAR point clouds, and thermal imaging. Such data fusion
significantly enhances weed detection accuracy. Studies confirm that combining spectral, textural,
and thermal features yields superior classification performance compared to single-modality
approaches (FourWeekMBA, 2025; Monteiro, Santos, 2022).

Second, even homogeneous data (e.g., visible-spectrum photographs from multiple drones)
exhibit overlapping regions that must be seamlessly stitched. Generating consistent orthomosaics
and vegetation maps from partially overlapping images is essential to avoid gaps or duplicate
counting of the same plants.

5. Image Recognition via Artificial Intelligence

Object detection in drone-captured imagery is framed as a classification problem within an
Al system. Solving it requires a pre-assembled image database of regional flora, partitioned into
training and validation sets. A neural network is then trained on this dataset to classify plant
species in new, incoming images.

Since ground-truth labels (correct species identifications) are available for training samples,
this constitutes a supervised learning task. The goal is to assign each detected plant to its correct
taxonomic class. Unrecognized species — those absent from the training set — may be flagged as
“unknown.” Accumulation of numerous such cases would necessitate model retraining with
expanded data.

The machine learning (Malinowski et al., 2025) pipeline for plant classification is illustrated
in (Figure 6).

By aggregating observations from the drone swarm and classifying detected vegetation,
a detailed spatial map of invasive species distribution and density can be constructed. This enables
targeted intervention strategies — ranging from precision herbicide application to localized
mechanical removal — optimizing resource use and ecological impact.
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Fig. 6. Stages of the machine learning process

6. Advantages of Drone Swarm Monitoring

Compared to conventional field inspection methods, agricultural drone swarms offer the
following advantages:

1. Rapid area coverage: Depending on model, a single drone can monitor 2—6 hectares in 10—
20 minutes. Swarm deployment parallelizes this process, drastically reducing total inspection time.

2. Operation in complex terrain: High maneuverability and terrain-following sensors enable
obstacle avoidance and effective monitoring on slopes, wetlands, and other inaccessible areas
where tractors or personnel cannot operate.

3. Geospatial precision: GPS-enabled data ensures accurate mapping and repeatable
monitoring.

4. All-weather and day/night operability: Equipped with appropriate sensors (e.g., thermal,
NIR), drones function independently of lighting or meteorological conditions.

5. Cost efficiency: UAVs significantly reduce expenditures on ground machinery, fuel, and
labor.

6. Multifunctionality: Modern drones support advanced features such as waypoint marking,
mission pause/resume, multi-payload coordination, and centralized task management.

Agronomists traditionally face significant time and labor demands in routine field
inspections. The integration of NDVI (Normalized Difference Vegetation Index) maps enables real-
time vegetation monitoring, highlighting priority zones for ground verification.

NDVI quantifies vegetation presence and health by analyzing reflected light in visible and
near-infrared (NIR) bands (Li, 2009). Chlorophyll-rich, healthy plants strongly absorb red light
(used in photosynthesis) and reflect NIR due to intact cellular structure. Stressed or sparse
vegetation exhibits the opposite pattern. Thus, NDVI serves as a proxy for crop vigor.

However, NDVI indicates that a problem exists — not why. Season-long NDVI trend analysis
is essential for accurate diagnosis.

NDVI data is collected via satellites or UAVs equipped with NIR cameras, operating from
orbital altitudes down to ~700 m. This enables high-resolution, actionable field maps.

The data acquisition workflow includes:

1. Equipment calibration for specific crops and conditions;

2. Placement of ground control points;

3. Aerial image capture;

4. Georeferencing of all field segments.

Post-processing yields detailed vegetation health maps, empowering agronomists to
prioritize interventions and forecast yields.

Sentinel-2 satellite imagery provides NDVI at 10 m/pixel resolution, enabling fine-scale
analysis — superior to other optical indices limited to 20 m/pixel. Nevertheless, NDVI has
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limitations: its sensitivity declines at high canopy densities, and persistent cloud cover can degrade
data quality, necessitating complementary radar or UAV-based sensing.

Moreover, NDVI performs poorly in fields with low vegetation cover or during early growth
stages. In such cases, the MSAVI (Modified Soil-Adjusted Vegetation Index) offers a robust
alternative. MSAVI accounts for soil background effects (color, moisture), making it particularly
effective during early season monitoring when soil is still visible between sparse seedlings.

6. Conclusion

The deployment of agricultural drone swarms for monitoring crop fields substantially
enhances agronomic efficiency. By automating visual inspection, enabling precise weed detection,
and leveraging Al-driven analytics, this approach significantly boosts labor productivity in
agriculture while supporting sustainable, data-driven decision-making.
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